

RESUMEN DE LAS NORMAS IUPAC 2005 DE NOMENCLA-TURA DE QUÍMICA INORGÁNICA PARA SU USO EN ENSE-ÑANZA SECUNDARIA Y RECOMENDACIONES DIDÁCTICAS.

> Fecha de presentación 17 de mayo de 2016

Grupo de Trabajo de Nomenclatura de Química Inorgánica de la Real Sociedad Española de Química

Fecha de finalización 17 de mayo de 2016

Índice

Introducción.	1
Conceptos implicados	3
La tabla periódica como soporte de la nomenclatura	4
Tipos de nomenclatura	6
Glosario de conceptos básicos	7
Normas actuales de la IUPAC sobre nomenclatura de Química Inorgánica.	11
Introducción	12
Nomenclatura de composición (nombres estequiométricos)	14
Nomenclatura de sustitución	17
Nomenclatura de adición	18
Nomenclatura de hidrógeno	22
Nombres de reemplazo funcional de derivados de oxoácidos	23
Recomendaciones para la enseñanza de la nomenclatura de	
química inorgánica en la enseñanza secundaria	27
Introducción	28
2.º ESO	29
3.º ESO	31
4.ºESO	33
Bachillerato	36
Información complementaria	40
Errores en la nomenclatura de química inorgánica en los libros	
de bachillerato y ESO	44
Introducción	45
Anexo 1 (editorial Bruño)	48
Anexo 2 (editorial Mc Graw Hill)	54
Anexo 3 (editorial S.M.)	57
Anexo 4 (editorial Oxford)	62
Anexo 5 (editorial Edelvives)	65
Tabla de nombres vulgares aceptados	68
Otros materiales de interés	70
Páginas web recomendadas	71
Documentos de consulta recomendados	71
Brief Guide	72
Guía Breve (traducción)	76
Nomenclatura química inorgánica básica	80
Breve historia de la traducción del Libro Rojo	88
Guía de nomenclatura Universidad de La Rioia	94

Introducción

Las normas de nomenclatura de Química Inorgánica de la IUPAC (*Red Book*, 2005; traducido al castellano *Libro Rojo*, 2007) han producido entre los docentes de las enseñanzas de secundaria, bachillerato y universidad un grave problema. Empresas editoriales y profesores dicen aplicar dichas normas, pero en cada libro de texto se consideran de forma distinta induciendo a los profesores y sus respectivos alumnos a serios problemas de unificación, en particular, en las PAU u otras pruebas colectivas.

Un gran número de docentes muestran su preocupación por la disparidad de criterios en torno a la nomenclatura. En ese sentido, indican que les gustaría se llevase a cabo la edición de unas normas simplificadas con el fin de unificarlas. Este es el espíritu de la creación de un Grupo de Trabajo para la elaboración de una Guía Nomenclatura de Química Inorgánica para estudiantes de secundaria y bachillerato (*La Guía*).

Este Grupo de Trabajo se creó en la Junta de Gobierno de la Real Sociedad Española de Química (RSEQ) el 19 de noviembre de 2015 a propuesta del profesor Juan José Borrás de la Universidad de Valencia. La RSEQ haciéndose eco del sentir de la mayoría del profesorado de enseñanza secundaria y bachillerato decidió la creación del Grupo de Trabajo que coordina el profesor Pascual Román de la Universidad del País Vasco y presidente de la Sección Territorial del País Vasco de la RSEQ.

Inicialmente, el profesor Román decidió invitar a formar parte de este Grupo de Trabajo a las profesoras y los profesores siguientes: Juan José Borrás, Miguel Ángel Ciriano, Ernesto de Jesús, Luis Ignacio García, Manuela Martín Sánchez y María Elena Olmos. Todos ellos trabajan o han trabajado en labores de coordinación de profesores o han elaborado libros o manuales de formulación y nomenclatura química. Este grupo inicial se ha incrementado hasta alcanzar los catorce miembros que se indican en la Tabla 1.

El objetivo de este Grupo de Trabajo es elaborar una *Guía de Nomenclatura de Química Inorgánica* para los profesores y estudiantes de secundaria y bachillerato.

Los seis bloques temáticos que se han desarrollado sobre nomenclatura de química inorgánica son:

- Conceptos implicados: conceptos esenciales, tabla periódica y tipos de nomenclatura. PRP, GBA, MMS y SPY.
- Normas actuales de la IUPAC sobre nomenclatura de Química Inorgánica.
 MAC, JJB, y EDJ.
- Propuesta de nomenclatura para la ESO y Bachillerato. LIG, SOC, EGA
- Listado de errores. SOC.
- Otros materiales de interés. PRP, LIG, SOC.
- Elaboración del documento final. PRP, MAC, LIG, SOC.

*Las siglas (ver Tabla 1) representan las personas implicadas en cada bloque. En primer lugar figura el coordinador o coordinadora. Una persona puede estar en uno o más bloques, a su elección.

Tabla 1. Relación de miembros del GT-FNQI.

Miembros del Grupo	de Trabajo de Nome	enclatura (GT-FNQI) de la RSEQ
Nombre y apellidos	Centro	Email
Gotzone Barandika Argoitia (GBA)	UPV/EHU	gotzone.barandika@ehu.es
Juan José Borrás Almenar (JJB)	UV	juan.j.borras@uv.es
Miguel Ángel Ciriano López (MAC)	CSIC- UNIZAR	mciriano@unizar.es
Ernesto de Jesús Alcañiz (EDJ)	UAH	ernesto.dejesus@uah.es
José Manuel Fernández Colinas (JMF)	UNIOVI	jmfc@uniovi.es
Eduardo J. Fernández Garbayo (EJFG)	UR	eduardo.fernandez@unirioja.es
Luis Ignacio García González, (LIG)	IES La Magdalena, Avilés	garlan2@telecable.es
Elvira González Aguado (EGA)	Berritzegune Abando, Bilbao	elvirag1@gmail.com
Manuela Martín Sánchez (MMS)	GE-DHFQ, RSEQ	manuelamartinsanchez@gmail.com
Salvador Olivares Campillo (SOC)	IES Floridablanca, Murcia	olivares.salvador@gmail.com
María Elena Olmos Pérez (MEO)	UR	m-elena.olmos@unirioja.es
Sonia Pérez Yáñez (SPY)	UPV/EHU	sonia.perez@ehu.es
Pascual Román Polo (PRP)	UPV/EHU	pascual.roman@gmail.com
Luis Carlos Zaballos Ruiz (LCZ)	Berritzegune Abando, Bilbao	luiszaballos@gmail.com

CONCEPTOS IMPLICADOS:

CONCEPTOS ESENCIALES, TABLA PERIÓDICA Y TIPOS DE NOMENCLATURA

Pascual Román Polo Gotzone Barandika Argoitia Manuela Martín Sánchez Sonia Pérez Yáñez

La tabla periódica soporte de la nomenclatura

El estudio de la nomenclatura de química inorgánica (NQI) debe ir precedido por la adquisición de algunos conceptos básicos esenciales y de la tabla periódica de los elementos químicos para su mejor comprensión. La tabla periódica (TP) es el soporte en el que se basa el aprendizaje de la NQI y de la química. Los estudiantes de los primeros niveles de la ESO deben conocer la existencia de la actual TP compuesta por 118 elementos químicos con la reciente validación de los elementos de números atómicos 113, 115, 117 y 118. [1]

De entre los múltiples formatos de la TP, se ha elegido la propuesta por la IUPAC, adaptada al castellano por Carlos Alonso (Figura 1). En dicha TP, se muestra para cada elemento su número atómico, su símbolo, su nombre y su peso atómico (masa media relativa). Es preciso que los estudiantes se acostumbren a reconocer la TP como una cuadrícula de columnas y filas donde se alojan los elementos químicos. Esta disposición de los elementos permite jugar con ella, a la vez que se va completando su aprendizaje. Los estudiantes guiados por sus profesores aprenderán los elementos a través de canciones, reglas mnemotécnicas y juegos, como la guerra de barcos donde el tablero de operaciones navales es una TP debidamente preparada para aprender los elementos químicos jugando con ellos, bien dando las coordenadas de los barcos, que están formados por dos o más elementos, o por su número atómico, o bien por su nombre o símbolo. [3-5]

Grupo	TABLA PERIÓDICA DE LOS ELEMENTOS - IUPAC							18										
1	H hidrógeno 1,008	2	_										13	14	15	16	17	He helio 4,003
2	Li litio 6,941	Be berilio 9,012											5 B boro 10,81	C carbono 12,01	7 N nitrógeno 14,01	0 oxígeno 16,00	9 F flúor 19,00	Ne neón 20,18
3	Na sodio 22,99	Mg magnesio 24,31	3	4	5	6	7	8	9	10	11	12	Al aluminio 26,98	Si silicio 28,09	P fósforo 30,97	S azufre 32,07	Cl cloro 35,45	Ar argón 39,95
4	K potasio 39,10	Ca calcio 40,08	Sc escandio 44,96	Ti titanio 47,87	V vanadio 50,94	Cr cromo 52,00	Mn manganeso 54,94	Fe hierro 55,85	Co cobalto 58,93	Ni níquel 58,69	Cu cobre 63,55	2n cinc 65,41	Ga galio 69,72	Ge germanio 72,64	As arsénico 74,92	Se selenio 78,96	Br bromo 79,90	Kr kriptón 83,80
5	Rb rubidio 85,47	Sr estroncio 87,62	Y (trio 88,91	Zr circonio 91,22	Nb niobio 92,91	Mo molibdeno 95,94	Tc tecnecio (98)	Ru rutenio 101,1	Rh rodio 102,9	Pd paladio 106,4	Ag plata 107,9	Cd cadmio 112,4	In indio 114,8	Sn estaño 118,7	Sb antimonio 121,8	Te teluro 127,6	53 I yodo 126,9	Xe xenón 131,3
6	Cs cesio 132,9	Ba bario 137,3	57-71 lantanoides	Hf hafnio 178,5	Ta tántalo 180,9	W wolframio 183,8	Re renio 186,2	Os osmio 190,2	Ir iridio 192,2	Pt platino 195,1	79 Au oro 197,0	Hg mercurio 200,6	TI talio 204,4	Pb plomo 207,2	Bi bismuto 209,0	Po polonio (210)	At astato (210)	Rn radón (220)
7	Fr francio (223)	Ra radio (226)	89-103 actinoides	Rf rutherfordio (267)	Db dubnio (268)	Sg seaborgio (271)	Bh bohrio (272)	Hs hassio (277)	Mt meitnerio (276)	Ds darmstadtio (281)	Rg roentgenio (280)	Cn copernicio (285)	Uut ununtrio (284)	FI flerovio (289)	Uup Uup ununpentio (288)	Lv Lv livermorio (293)	Uus ununseptio (294)	Uuo ununoctio (294)
			La lantano 138,9	Ce cerio 140,1	Pr praseodimio 140,9	Nd neodimio 144,2	Pm prometio (145)	5m samario 150,4	Eu europio 152,0	Gd gadolinio 157,3	Tb terbio 158,9	Dy disprosio 162,5	Ho Ho holmio 164,9	Er erbio 167,3	Tm tulio 168,9	Yb iterbio 173,0	Lu lutecio 175,0	
			Ac actinio (227)	90 Th torio 232,0	Pa Pa protactinio 231,0	92 U uranio 238,0	Np neptunio (237)	Pu plutonio (244)	Am americio (243)	96 Cm curio (247)	Bk berkelio (247)	Cf californio (251)	Es einstenio (252)	Fm fermio (257)	Md mendelevio (258)	No nobelio (259)	Lr lawrencio (262)	

Figura 1. Tabla periódica de los elementos adaptada de la IUPAC por Carlos Alonso.

El conocimiento de la TP facilita el aprendizaje de la secuencia de los elementos necesarios para formular los compuestos químicos (hidruros, óxidos, oxácidos, etcétera) según aparece en la Figura 2. Obsérvese que no se sigue el valor decreciente de la electronegatividad. El hidrógeno

se coloca entre los grupos 15 y 16. Los gases nobles se ubican al final, detrás de los metales alcalinos.

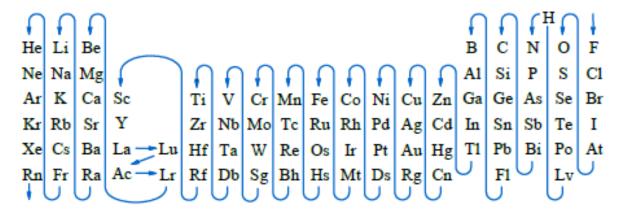


Figura 2. Secuencia de los elementos para formular y nombrar los compuestos químicos.

La secuencia de los elementos (Figura 2) se puede obtener a partir de la tabla periódica, trasladando el hidrógeno entre los grupos 15 y 16 y sobre ellos. Además, hay que desplazar el grupo de los gases nobles (grupo 18) para colocarlo delante del grupo 1 (Figura 3). Por último, hay que recordar que detrás del itrio (Z = 39) aparecen las series de los lantanoídeos y la de los actinoídeos (Figura 2) una a continuación de la otra.

En la propia tabla periódica, que tiene un formato visual fácil de recordar, aparecen los primeros conceptos básicos que los estudiantes deben aprender. Sugerimos un glosario de términos, ordenado por orden alfabético, que aparece al final de este capítulo, para que los profesores puedan guiar a sus estudiantes con mayor facilidad.

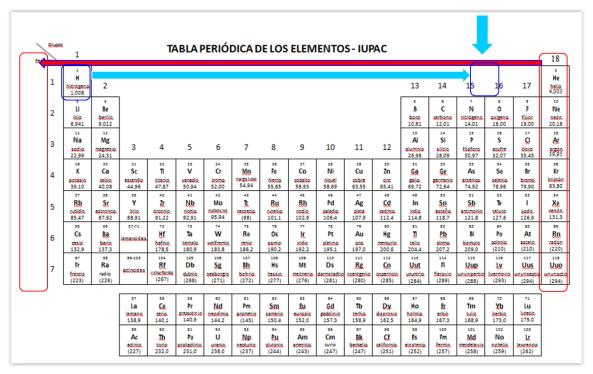


Figura 3. Secuencia de los elementos a partir de la tabla periódica.

Tipos de nomenclatura^[6]

Según la IUPAC, la nomenclatura en química inorgánica se puede clasificar en tres tipos: sistemática semisistemática y tradicional o vulgar. A su vez, la nomenclatura sistemática se puede subdividir en otros tres tipos: adición, composición y sustitución.

La **nomenclatura sistemática** recoge el nombre de identificación de una sustancia química que se obtiene por aplicación de las reglas sistemáticas de la nomenclatura química y a partir del cual se puede inferir, al menos, su composición química.

La **nomenclatura semisistemática** es la que contiene el nombre de identificación de una sustancia química cuya construcción sigue algún tipo de reglas pero del que no se puede inferir la composición química de la misma. Muchos nombres de oxoácidos y de sus sales pertenecen a esta categoría.

La **nomenclatura tradicional** (o **vulgar**) contiene el nombre que identifica a una sustancia química, pero que no ha sido obtenido por aplicación de las reglas sistemáticas de la nomenclatura.

La **nomenclatura de adición** recoge el nombre de las sustancias químicas en las que a un átomo central se le unen los demás átomos (o grupos de átomos) como si fueran ligandos. Esta nomenclatura es útil para nombrar los oxocompuestos y los compuestos de coordinación. La nomenclatura de adición considera que un compuesto o especie es una combinación de un átomo central o átomos centrales con ligandos asociados. En la nomenclatura de adición los nombres se construyen colocando los nombres de los ligandos como prefijos del nombre (o nombres) del (de los) átomo(s) central(es).

La nomenclatura de composición (también llamada nomenclatura estequiométrica) está basada en la composición y no en la estructura. Muestra el nombre de las sustancias químicas basada en los distintos tipos de átomos que la integran. Da información sobre los tipos de átomos presentes y en qué proporción, y se expresa por prefijos numerales, números de oxidación y números de carga (compuestos iónicos). A veces, puede ser la única opción si no se dispone de (o no se pretende dar) información estructural.

En ella se indica la proporción de los constituyentes a partir de la fórmula empírica o la molecular. La proporción de los elementos o constituyentes puede indicarse de varias formas:

- Usando prefijos multiplicadores (mono-, di-, tri-, etc...).
- Usando el número de oxidación de los elementos (mediante números romanos).
- Usando el número de carga de los iones (números arábigos seguido del signo correspondiente)

La **nomenclatura de sustitución** está basada en los hidruros no metálicos, que se nombran como los hidrocarburos y empleando los sufijos necesarios. La IUPAC acepta los nombres tradicionales de agua (H_2O) y amoniaco (NH_3). Se utiliza ampliamente en los compuestos orgánicos y se basa en la idea de un hidruro progenitor que se modifica al sustituir los átomos de hidrógeno por otros átomos y/o grupos. La nomenclatura de sustitución basa los nombres en los llamados hidruros progenitores. Los nombres se forman citando los prefijos o sufijos pertinentes de los grupos sustituyentes que reemplazan los átomos de hidrógeno del hidruro progenitor, unidos, sin separación, al nombre del hidruro padre sin sustituir.

Glosario de conceptos básicos^[7-9]

Sugerimos un glosario de términos, ordenado por orden alfabético para que los profesores puedan guiar a sus estudiantes con mayor facilidad.

Aleación. Producto homogéneo, obtenido por fusión, compuesto por dos o más elementos químicos, uno de los cuales, al menos, debe ser un metal.

Átomo. Partícula indivisible por métodos químicos, formada por un núcleo rodeado de electrones. Es la unidad constituyente más pequeña de la materia que tiene las propiedades de un elemento químico.

Anión. Ion con carga negativa.

Carga eléctrica. Es una propiedad física intrínseca de algunas partículas subatómicas que se manifiesta mediante fuerzas de atracción y repulsión entre ellas por la mediación de campos electromagnéticos.

Carga elemental. Constante electromagnética física fundamental igual a la carga de un protón que se utiliza como unidad atómica de carga (e = $1,602\,176\,487(40)\,x\,10^{-19}\,C$).

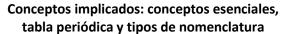
Catión. Ion con carga positiva.

Compuesto de coordinación. Sustancia química con átomos, moléculas o iones –los ligandos– unidos a un átomo o ion central, que generalmente suele ser un metal.

Compuesto químico. Se trata de una sustancia formada por la combinación de uno, dos o más elementos en proporciones fijas.

Electrón. Partícula de materia elemental con carga eléctrica negativa, que gira alrededor del núcleo atómico.

Electronegatividad. Se define como la tendencia de un átomo a captar electrones de otro átomo en un enlace covalente.


Elemento químico. Una sustancia química pura compuesta por átomos con el mismo número de protones en el núcleo atómico. A veces, este concepto se aplica a la sustancia elemental a diferencia del elemento químico, pero, muchas veces, el término elemento químico se utiliza para ambos conceptos. Un elemento químico es una sustancia que no puede descomponerse en otras sustancias más sencillas, mediante una reacción química.

Enlace covalente. Un enlace químico formado entre átomos que comparten electrones.

Enlace iónico. Un enlace químico formado entre especies cargadas opuestamente a causa de su mutua atracción electrostática. Un enlace iónico se refiere a la atracción electrostática experimentada entre las cargas eléctricas de un catión y un anión, en contraste con un enlace covalente puro.

Enlace metálico. Enlace químico que mantiene unidos los átomos de los metales entre sí. Estos átomos se agrupan de forma muy cercana unos a otros, lo que produce estructuras muy compactas.

Enlace químico. Es la unión física responsable de las interacciones entre átomos, moléculas e iones, que tiene una estabilidad en los compuestos diatómicos y poliatómicos.

Estado de oxidación (también llamado número de oxidación o grado de oxidación). Es un indicador del grado de oxidación (pérdida o ganancia de electrones) de un átomo en un compuesto u otra especie química. Formalmente, el estado de oxidación, que puede ser positivo, negativo o cero, es la carga hipotética que un átomo tendría si todos sus enlaces con diferentes elementos fueran 100% iónicos, sin componente de enlace covalente. Se escriben con números arábigos precedidos de su signo por ejemplo, +1, +2, +8/3, 0, -1, -2, -3...

Fórmula. Combinación de símbolos químicos que expresa la composición de una sustancia.

Fórmula empírica. Fórmula que expresa solamente los símbolos de los átomos presentes en una molécula y la más sencilla relación numérica entre ellos, sin indicar su estructura.

Fórmula estructural. La fórmula estructural de un compuesto químico es una representación gráfica de la estructura molecular, que muestra cómo se organizan los átomos en el espacio.

Fórmula molecular. La fórmula química da el número total de átomos de cada elemento en cada molécula de una sustancia.

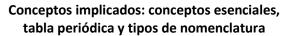
Formulación. La formulación química consiste en la representación de los elementos que forman parte de un compuesto. Además de la representación se encuentra la proporción de los elementos que intervienen así como el número de átomos que forman la molécula.

Grado de oxidación. Véase estado de oxidación.

Grupo. Conjunto de elementos químicos que se encuentran en una misma columna de la tabla periódica y se caracterizan por tener propiedades físicas y químicas semejantes.

Isótopo. Cada uno de los átomos que poseen el mismo número de protones (igual número atómico) y distinto número de neutrones.

IUPAC. Abreviatura en inglés de *International Union of Pure and Applied Chemistry*, Unión Internacional de Química Pura y Aplicada. Fue fundada en 1919. Organismo que vigila la formulación y nomenclatura de los compuestos químicos, entre otras muchas funciones.


Ligando. En un compuesto de coordinación, es el átomo, átomos o grupos de átomos unidos al átomo central.

Masa atómica. Masa en descanso de un átomo en su estado fundamental. La unidad comúnmente utilizada es la unidad de masa atómica unificada, que se define como la duodécima (1/12) parte de la masa de un átomo de carbono-12 en el estado fundamental y se usa para expresar las masas de las partículas atómicas u \cong 1,660 5420(10) x 10^{-27} kg.

Materia. Es todo aquello que ocupa un lugar en el espacio, posee una cierta cantidad de energía, y está sujeto a cambios en el tiempo y a interacciones con aparatos de medida.

Molécula. Es la parte más pequeña de una sustancia química que puede existir de forma independiente con sus propiedades características. Según el número de átomos que constituye la molécula, éstas pueden ser: diatómicas (dos átomos), triatómicas (tres átomos), tetratómicas (cuatro átomos), etcétera.

Neutrón. Partícula elemental sin carga eléctrica, que forma parte del núcleo del átomo. Esta partícula subatómica está presente en el núcleo atómico de todos los átomos, excepto el protio, isótopo más abundante del hidrógeno, cuyo núcleo está compuesto únicamente por un protón.

Nombre del elemento. Los nombres de los elementos proceden de nombres de la mitología, planetas, cuerpos celestes, lugares (ciudades, regiones o países), ríos, propiedades físicas y químicas y nombres de científicos.

Nombre semisistemático. Un nombre en el que al menos una parte se usa en un sentido sistemático. Se dice del nombre de identificación de una sustancia química cuya construcción sigue algún tipo de reglas pero del que no se puede inferir la composición química de la misma. Muchos nombres de oxoácidos y de sus sales pertenecen a esta categoría.

Nombre sistemático. Se dice del nombre de identificación de una sustancia química que se obtiene por aplicación de las reglas sistemáticas de la nomenclatura química y a partir del cual se puede inferir, al menos, su composición química.

Nombre vulgar. Se dice del nombre que identifica a una sustancia química, pero que no ha sido obtenido por aplicación de las reglas sistemáticas de la nomenclatura.

Nomenclatura química. Conjunto de reglas o fórmulas que se utilizan para nombrar todos los elementos y compuestos químicos.

Nomenclatura de adición recoge el nombre de las sustancias químicas en las que a un átomo central se le unen los demás átomos (o grupos de átomos) como si fueran ligandos. Esta nomenclatura es útil para nombrar los oxocompuestos y los compuestos de coordinación. En ella no se emplean los números de oxidación.

Nomenclatura de composición (también llamada nomenclatura estequiométrica). Está basada en la composición y no en la estructura. Muestra el nombre de las sustancias químicas basada en los distintos tipos de átomos que la integran. Da información sobre los tipos de átomos presentes y en qué proporción, y se expresa por prefijos numerales, números de oxidación y números de carga.

Nomenclatura de sustitución. Está basada en los hidruros no metálicos, que se nombran como los hidrocarburos y empleando los sufijos necesarios. La IUPAC acepta los nombres tradicionales de agua (H₂O) y amoniaco (NH₃).

Número atómico (Z). Es el número total de protones en el núcleo atómico que tiene cada átomo de ese elemento. Coincide con el número de electrones, lo que hace al átomo eléctricamente neutro. Sirve para indicar la posición de los elementos en la tabla periódica.

Número de oxidación. Véase estado de oxidación.

Número másico (A), también llamado **número de masa** o **número de nucleones,** es la suma del número de protones y el número de neutrones del núcleo de un átomo.

Periodo. Conjunto de elementos químicos que se encuentran en una misma fila de la tabla periódica y se caracterizan por tener propiedades físicas y químicas diferentes. El número atómico crece en un periodo de uno en uno.

Peso atómico. La masa media de un átomo de un elemento tal como se presenta en la naturaleza, que se expresa en unidades de masa atómica (uma). La relación de la masa media del átomo respecto a la unidad de masa atómica unificada.

Peso atómico estándar. Es el valor recomendado de la masa atómica relativa del elemento revisado cada dos años por la Comisión de Pesos Atómicos y Abundancias Isotópicas de la IUPAC

Conceptos implicados: conceptos esenciales, tabla periódica y tipos de nomenclatura

Grupo de trabajo Conceptos

en cualquier muestra con un alto nivel de confianza. Una muestra normal es cualquier fuente razonablemente posible del elemento o sus compuestos en el comercio, la industria y la ciencia, que no ha sido sujeto de modificación significativa de la composición isotópica en un breve periodo geológico.

Protón. Partícula elemental con carga eléctrica positiva, que forma parte del núcleo del átomo. Es una partícula subatómica con una carga eléctrica elemental positiva +1 ($1,6 \times 10^{-19}$ C), igual en valor absoluto y de signo contrario a la del electrón, y una masa 1836 veces superior a la de un electrón.

Símbolo alquímico. Los símbolos de la alquimia solían fundarse en la transformación de fórmulas matemáticas en signos geométricos llamados símbolos de alquimista o sellos.

Símbolo atómico. Una, dos o tres letras que se utilizan para representar el átomo en la fórmula química. Los símbolos de tres letras son los que usa provisionalmente la IUPAC desde el descubrimiento de un nuevo elemento hasta su verificación por la IUPAC y propuesta del nombre y símbolo de dos letras por sus descubridores.

Símbolo químico. Los símbolos químicos son abreviaciones o signos que se utilizan para identificar los elementos. Fueron propuestos en 1814 por Berzelius en reemplazo de los símbolos alquímicos. A partir de los símbolos se formulan los compuestos químicos.

Tabla periódica. Es una disposición de los elementos químicos ordenados por su número atómico creciente en columnas (grupos) y filas (periodos) presentados de modo que destaquen sus propiedades periódicas.

Valencia. Se define como el número de enlaces que un átomo del elemento forma al unirse con otros átomos. La valencia de un elemento es la capacidad de combinación de un átomo.

Bibliografía

- 1. Discovery and Assignment of Elements with Atomic Numbers 113, 115, 117 and 118, *Nota de prensa de la IUPAC*, 30/12/2015, bit.ly/1PzQmz3, visitada el 23/02/2016.
- 2. C. Alonso, Tabla periódica de los elementos IUPAC, <u>bit.ly/1ozbkU3</u>, visitada el 23/02/2016.
- 3. P. Román Polo, La marcha de los elementos químicos, *An. Quím.*, **2011**, *107* (3), 262–265.
- 4. P. Román Polo, La tabla periódica de los elementos químicos para niños y abogados, *An. Quím.*, **2015**, *111* (4), 247–253.
- 5. K. Tripp, Periodic Table Battleship, http://teachbesideme.com/, bit.ly/1ZvG3wU, visitada el 23/02/2016.
- 6. Web sobre nomenclatura y formulación, bit.ly/1UtGd92, visitada el 22/02/2016.
- 7. IUPAC Compendium of Chemical Terminology, Gold Book, Versión 2.3.3., bit.ly/1k0yQ5J, visitada el 23/02/2016.
- 8. Diccionario de la lengua española (DLE), RAE, bit.ly/18M1VQm, visitada el 23/02/2016.
- 9. Diccionario Merriam-Webster, bit.ly/levC70a, visitada el 23/02/2016.

NORMAS ACTUALES DE LA IUPAC SOBRE NOMENCLATURA DE QUÍMICA INORGÁNICA

Miguel Ángel Ciriano López Juan José Borrás Almenar Ernesto de Jesús Alcañiz

Normas actuales de la IUPAC sobre nomenclatura de Química Inorgánica

Miguel A. Ciriano

Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Zaragoza.

C-e: mciriano@unizar.es.

1. INTRODUCCIÓN

El propósito de este escrito es ilustrar las recomendaciones de nomenclatura de Química Inorgánica de la *International Union of Pure and Applied Chemistry* (IUPAC) descritas sucintamente en la Guía Breve para la Nomenclatura de Química Inorgánica ^[1] o resumir las publicadas en el Libro Rojo, ^[2] dirigido a los profesores de Educación Secundaria en los distintos niveles educativos (ESO y Bachillerato). Consecuentemente, no se tratará la nomenclatura de compuestos de coordinación, compuestos organometálicos y sólidos. Entre los comentarios a las nuevas normas de nomenclatura de la IUPAC, el artículo del grupo de Pico^[3] es de lectura recomendable.

En las recomendaciones de la IUPAC de 2005 para la nomenclatura de sustancias inorgánicas aparecen cambios significativos. Así, el orden en que aparecen los símbolos de los elementos en las fórmulas (o el átomo central en compuestos de coordinación) y el nombre modificado de uno de ellos en los nombres de compuestos binarios no se sigue exactamente de su electronegatividad, sino de su posición en la Tabla Periódica mediante la llamada secuencia de los elementos (Figura 1). La consecuencia es que los nombres de los compuestos de los halógenos con el oxígeno no son óxidos de los halógenos sino halogenuros de oxígeno. Otras modificaciones importantes se refieren a los nombres de los iones y a la nomenclatura de oxoácidos y oxosales y a la de hidrógeno. Además, se introducen nuevos nombres en los hidruros de elementos representativos, suprimiéndose nombres como fosfina, arsina y estibina.

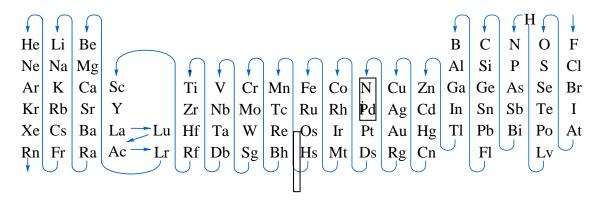


Figura 1. Secuencia de los elementos.

En el desarrollo de la nomenclatura, han aparecido diversos sistemas para la construcción de los nombres químicos; cada uno de ellos tiene su propia lógica inherente y su conjunto de reglas (gramática). Los tres sistemas de importancia fundamental en química inorgánica son las nomenclaturas de composición, sustitución y adición. La nomenclatura de adición es posiblemente la de mayor aplicación general en química inorgánica, aunque la nomenclatura de sustitución se aplica en áreas para las que es más adecuada, como en química orgánica. Ambos sis-

temas requieren el conocimiento de la constitución (conectividad) del compuesto o especies que se van a nombrar. Si se conoce o se quiere comunicar solamente la estequiometría o composición de un compuesto, entonces se usa la nomenclatura de composición, que es la más sencilla.

Nomenclatura de composición (o estequiométrica)

La construcción de un nombre se basa en la composición de una sustancia. Una construcción de este tipo es la de un *nombre estequiométrico* generalizado. Los nombres de los componentes, que pueden ser elementos, iones o entidades compuestas (tales como iones poliatómicos), se indican junto con los prefijos multiplicadores (Tabla 1) que dan la estequiometría completa del compuesto.

El prefijo mono (1) no suele utilizarse salvo que su ausencia conduzca a confusiones. Por ejemplo, óxido de carbono no define exactamente un compuesto, ya que se conocen varios óxidos de carbono. Para evitar esta ambigüedad, CO debe llamarse monóxido de carbono. No son admisibles las contracciones salvo monóxido. Por ejemplo: pentaóxido es correcto y pentóxido es incorrecto.

Si existen dos o más componentes, éstos se dividen formalmente en electropositivos y electronegativos. A este respecto, los nombres son similares a los de las sales tradicionales, aunque ello no tiene implicaciones sobre la naturaleza química de las especies que se nombran.

Nο Simple Complicado Nο **Simple** Complicado 2 di bis 8 octa octakis 3 tri tris 9 nona nonakis tetrakis tetra 10 deca decakis 5 pentakis 11 undecakis penta undeca 6 hexakis 12 dodecakis hexa dodeca hepta heptakis 20 icosa icosakis

Tabla 1. Prefijos multiplicadores para especies simples y complejas.

Ejemplos: O₃, trioxígeno; NaCl, cloruro de sodio; PCl₃, tricloruro de fósforo; NaCN, cianuro de sodio

Nomenclatura de sustitución

La nomenclatura de sustitución se utiliza ampliamente para los compuestos orgánicos y se basa en el concepto de un hidruro progenitor cuyo nombre se modifica al sustituir los átomos de hidrógeno por otros átomos o grupos. También se usa para nombrar los compuestos que se derivan formalmente de los hidruros de algunos elementos de los grupos 13–17 de la tabla periódica.

Ejemplos: SiH₄, silano; SiHCl₃, triclorosilano; PH₃, fosfano; PHMe₂, dimetilfosfano

Nomenclatura de adición

La nomenclatura de adición considera que un compuesto o especie es una combinación de un átomo central o átomos centrales con ligandos asociados. El sistema de adición se usa para los compuestos de coordinación aunque puede usarse para clases de compuestos mucho más amplias, como se muestra para los ácidos inorgánicos.

Ejemplos: PCl₃, triclorurofosforo; HMnO₄ = [MnO₃(OH)], hidroxidotrioxidomanganeso

2. NOMENCLATURA DE COMPOSICIÓN (NOMBRES ESTEQUIOMÉTRICOS)

Un **nombre estequiométrico** o **de composición** sólo proporciona información sobre la composición de un ion, molécula o compuesto y puede estar relacionado bien con la fórmula empírica o con la molecular de esa especie. No proporciona ninguna información estructural.

Especies homoatómicas

Contienen únicamente átomos de un elemento. Una muestra de un elemento que tiene una fórmula indefinida o es una mezcla de alótropos tiene el mismo nombre que el del átomo. En el caso de tener que nombrar especies moleculares definidas de los elementos, el nombre se forma combinando el nombre del elemento con el prefijo multiplicador pertinente que corresponde al número de átomos en la molécula. (Tabla 2, primera columna). El prefijo 'mono' se usa únicamente cuando el elemento no se presenta en la naturaleza en estado monoatómico. Se sobreentiende que las moléculas de los gases nobles son monoatómicas.

Los iones se nombran añadiendo los números de carga entre paréntesis, p. ej., (1+), (3+), (2-) al nombre del elemento si son cationes o al nombre del elemento modificado si son aniones. Para obtener (la mayoría de) los nombres de los aniones homoatómicos se añade la terminación '–uro' en lugar de las terminaciones de los nombres de los elementos: '–eso', '–ico', '–o', '–io', '–ogeno', '–ono', u '–oro'. La excepción más importante es el oxígeno, para el que el nombre del anión más simple (O^2-) es óxido. Para algunos elementos (p. ej., S, Fe, Ag, Au) se usa la raíz del nombre en latín antepuesta a la terminación '–uro'. Algunos aniones pueden tener nombres tradicionales aceptables (que se usan sin números de carga). Por ejemplo, N_3- , azida; O^2- , óxido; O_2^2- , peróxido; O_2- , superóxido; S^2- , sulfuro; S_2^2- , disulfuro; S_2- , cloruro; etc. (Tabla 2).

Obsérvese que el número de carga va seguido al nombre del ion sin espacio, entre paréntesis y con el formato n+. En las fórmulas la carga va como superíndice y el número precede al signo (con el formato n+/n-)

Fórmula Fórmula Fórmula Nombre **Nombre Nombre** sodio(1+) O_2 dioxígeno Na⁺ CI^{-} cloruro(1–) o cloruro Fe²⁺ S_8 octaazufre hierro(2+) $I_3^$ triyoduro(1-) Hg_2^{2+} O_2^{2-} P_4 tetrafósforo dimercurio(2+) dióxido(2-) o peróxido Cu²⁺ H_2 dihidrógeno cobre(2+) $N_3^$ trinitruro(1-) o azida P^{3-} Cu⁺ cobre(1+) fosfuro(3–) o fosfuro plata Ag C₂²⁻ Mn²⁺ dicarburo(2-) o acetiluro Ν mononitrógeno manganeso(2+)

Tabla 2. Ejemplos de especies homoatómicas.

Compuestos binarios

Los compuestos binarios son los que contienen átomos de dos elementos. Sus fórmulas se construyen escribiendo sus símbolos sin espacios con sus correspondientes coeficientes estequiométricos como subíndices y ordenándolos de modo que se representa en primer lugar el símbolo del elemento que se encuentre el último en la secuencia de los elementos (Figura 1). Se nombran estequiométricamente combinando los nombres de los elementos en el orden opuesto al de la fórmula, esto es, citando primero el nombre del elemento al que se llega primero al seguir la flecha de la secuencia de los elementos como si se tratara de un anión. Así, al nombre de este elemento formalmente 'electronegativo' se le da la terminación '—uro' y se coloca el primero en el nombre del compuesto, siguiéndole la preposición 'de' y el nombre del elemento formalmente 'electropositivo' (véase la Tabla 3). Para indicar la composición pueden usarse:

- a) Los prefijos multiplicadores (Tabla 1) antepuestos a los nombres de los elementos.
- b) Los números de carga, que siguen sin espacio a los nombres de catión y anión. Como el número de carga de los aniones no suele dar lugar a confusión, es suficiente señalar sólo el de los cationes. Además, la carga de algunos cationes puede omitirse cuando no hay duda, como es el caso de los alcalinos (grupo 1, siempre 1+) y los alcalinotérreos (grupo 2, siempre 2+), así como los elementos más comunes con número de oxidación único (caso del aluminio 3+, por ejemplo). Este método sólo es válido para los compuestos iónicos.
- c) Los números de oxidación. Para ello basta con añadir al esquema general de obtención del nombre el estado de oxidación del elemento más electropositivo mediante el número romano correspondiente escrito entre paréntesis y sin espacio. Este paso puede omitirse con los elementos más comunes con número de oxidación único, como los indicados en el apartado b)

Obsérvese que en b) y c) no se utilizan los prefijos multiplicadores.

Fórmula Fórmula Nombre Nombre dicloruro de hierro, arsenuro de galio, o o cloruro de hierro(II), GaAs FeCl₂ arsenuro de galio(III) o cloruro de hierro(2+) tricloruro de hierro, CO_2 dióxido de carbono FeCl₃ o cloruro de hierro(III) difluoruro de calcio, dióxido de dihidrógeno, CaF₂ H_2O_2 o fluoruro de calcio o peróxido de hidrógeno bromuro de plata, o dióxido de nitrógeno u NO2 AgBr bromuro de plata(1+) óxido de nitrógeno(IV) decaóxido de tetrafósforo CCI₄ tetracloruro de carbono P₄O₁₀

Tabla 3. Ejemplos de compuestos binarios.

Especies heteropoliatómicas

Generalmente, las **especies heteropoliatómicas** pueden nombrarse usando la nomenclatura de composición, pero, a menudo, se utiliza la nomenclatura de sustitución o la de adición. Esta última también proporciona información sobre la manera en que los átomos están conectados.

Obsérvese que por ejemplo para POCl₃ (o PCl₃O por orden alfabético), los nombres de composición: tricloruro óxido de fósforo y de adición: triclorurooxidofósforo indican la composición, pero el segundo indica además que los átomos de oxígeno y de cloro están unidos al de fósforo. La nomenclatura de estos compuestos tiene una base pseudobinaria que sigue las normas del sistema de composición. Antes de ilustrar como se crean los nombres de compuestos formados por aniones y/o cationes heteropoliatómicos o de aductos es preferible dedicar la atención a algunos tipos de compuestos como hidruros, a la nomenclatura de sustitución y a los oxoacidos y sus derivados. Por otra parte, conviene recordar que existen cationes y aniones heteroatómicos con nombres aceptados todavía [p. ej., amonio, NH_4^+ ; hidróxido, OH^- (o HO^- según la secuencia de los elementos); cianuro, CN^- ; nitrito, NO_2^- ; fosfato, PO_4^{3-} ; difosfato, $P_2O_7^{4-}$, etc.] que se utilizan muy frecuentemente para formular y nombrar especies heteropoliatómicas.

Hidruros y compuestos binarios con hidrógeno

En las combinaciones binarias de un elemento con el hidrógeno se debe tener en cuenta la secuencia de los elementos de la Figura 1, de modo que, para las combinaciones de hidrógeno con elementos de los grupos 1–15 se utilizará la nomenclatura de composición con la denominación hidruro para el hidrógeno con papel de elemento electronegativo y estado de oxidación H(–I). Se indicará la proporción de los elementos bien con los correspondientes prefijos multiplicadores o con el estado de oxidación o el número de carga del elemento más electropositivo, en caso de que éste tenga más de uno (Tabla 4).

Para las combinaciones con los elementos de los grupos 16 y 17 (excepto el oxígeno) se nombran poniendo en primer lugar el nombre del elemento más electronegativo con el sufijo 'uro' y, a continuación el del hidrógeno, si es necesario con el correspondiente prefijo multiplicador. Se admiten los nombres tradicionales amoniaco (NH $_3$), agua (H $_2$ O), e hidrazina (N $_2$ H $_4$); este último como hidruro progenitor en química orgánica. Los nombres del tipo 'ácido clorhídrico', 'ácido sulfhídrico', etc. se refieren a disoluciones acuosas de cloruro de hidrógeno o sulfuro de hidrógeno en agua y no corresponden a compuestos químicos sino a mezclas. Por tanto, su uso no está admitido en las normas de nomenclatura de la IUPAC.

Tabla 4. Ejemplos de hidruros y compuestos binarios con hidrógeno.

Fórmula	Nomenclatura de composición	Nombre no aceptado	Observaciones
FeH ₂	dihidruro de hierro, ó hidruro de hierro(II), ó hidruro de hierro(2+)	hidruro ferroso	
LiH	hidruro de litio	hidruro lítico	
PH ₃	trihidruro de fósforo, ó hidruro de fósforo(III)	fosfina	no tiene carácter iónico
H₂S	sulfuro de dihidrógeno, ó sulfuro de hidrógeno	ácido sulfhídrico	no tiene carácter iónico
HBr	bromuro de hidrógeno	ácido bromhídrico	no tiene carácter iónico
N ₂ H ₄	tetrahidruro de dinitrógeno		Nombre aceptado: hidrazina

Por otra parte, la IUPAC acepta los siguientes nombres de iones derivados de hidruros binarios (Tabla 5).

Fórmula Fórmula Nombre aceptado Nombre aceptado H_3O^{\dagger} oxonio (hidrón para H⁺) NH_4^+ amonio amida NH^{-} hidróxido NH^{2-} imida OHazida, trinitruro(1-) SH⁻ hidrogeno(sulfuro)(1-) N_3^-

Tabla 5. Ejemplos de nombres de iones derivados de hidruros binarios.

3. NOMENCLATURA DE SUSTITUCIÓN

En la nomenclatura de sustitución los hidruros de los elementos de los grupos 13 a 17 de la tabla periódica tienen un papel principal ya que se usan como compuestos progenitores. A partir de ellos, por sustitución formal de átomos de hidrógeno se obtienen sus derivados; obsérvese el orden en sus fórmulas: 1º) elemento representativo, 2º) hidrógeno, 3º) sustituyentes, como en los compuestos orgánicos.

Ejemplos: CH₂Cl₂, diclorometano; PbH₂Et₂, dietilplumbano; PH₂Ph, fenilfosfano.

Los nombres de los hidruros progenitores se construyen con la raíz del nombre del elemento y el sufijo '-ano' salvo los del carbono y son los que se indican en la Tabla 6. Son aceptados los nombres no sistemáticos amoníaco y agua, pero los nombres fosfina, arsina y estibina no se deben utilizar.

Fórm.	Nombre	Fórm.	Nombre	Fórm.	Nombre	Fórm.	Nombre	Fórm.	Nombre
BH ₃	borano	CH ₄	metano	NH ₃	azano	H ₂ O	oxidano	HF	fluorano
AlH ₃	alumano	SiH ₄	silano	PH ₃	fosfano	H ₂ S	sulfano	HCl	clorano
GaH ₃	galano	GeH₄	germano	AsH ₃	arsano	H₂Se	selano	HBr	bromano
InH ₃	indigano	SnH ₄	estannano	SbH ₃	estibano	H₂Te	telano	HI	yodano
TIH ₃	talano	PbH ₄	plumbano	BiH ₃	bismutano	H₂Po	polano	HAt	astatano

Tabla 6. Nombres progenitores de los hidruros mononucleares.

Aunque esta nomenclatura no se utilice con frecuencia en enseñanza, es conveniente indicar que los nombres de hidruros progenitores con mayor número de átomos del elemento representativo en las moléculas se construyen con los prefijos multiplicadores y la terminación '-ano'. Los nombres de los hidruros de boro y de carbono siguen reglas especiales.

Ejemplos: N_2H_4 , diazano (hidrazina); Si_3H_8 , trisilano; H_2O_2 , dioxidano (peróxido de hidrógeno).

Por otra parte, conviene conocer los nombres de iones y la forma de construirlos en la nomenclatura de sustitución.

Cationes

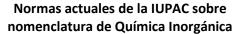
El nombre de un ion, derivado formalmente de la adición de un hidrón a un hidruro progenitor, se obtiene añadiéndole el sufijo '-io' al nombre del hidruro progenitor con elisión de la 'a' u 'o' finales. Para nombrar los policationes formados de esta manera se usan los sufijos '-diio', '-triio', etc. sin elisión de la 'a' u 'o' final del nombre del hidruro progenitor. Los nombres alternativos -que no son de sustitución- amonio, hidrazinio, hidrazinadiio y oxonio se usan para nombrar derivados orgánicos.

Ejemplos: NH₄⁺, azanio (amonio); N₂H₅⁺, diazanio (hidrazinio); N₂H₆²⁺, diazanodiio (hidrazinadiio);

 H_3O^+ , oxidanio (oxonio; *no es* hidronio); PH_4^+ , fosfanio; H_3S^+ , sulfanio.

Aniones

Un anión obtenido formalmente por eliminación de uno o más hidrones a partir de un hidruro progenitor se nombra añadiéndole '-uro', '-diuro', etc., al nombre del progenitor, elidiendo la 'o' o la vocal terminal solamente cuando ésta va antes de '-uro'.


Ejemplos: NH₂⁻, azanuro (amida); NH²⁻, azanodiuro (imida); H₂NNH⁻, diazanuro (hidrazinuro); H₂NN²⁻, diazano-1,1-diuro (hidrazina-1,1-diuro); SiH₃⁻, silanuro; GeH₃⁻, germanuro; SH⁻, sulfanuro.

4. NOMENCLATURA DE ADICIÓN

La nomenclatura de adición fue desarrollada originalmente para los compuestos de coordinación de tipo Werner. Se consideran constituidos por un átomo (o átomos) central(es) rodeado(s) por grupos conocidos como ligandos, aunque puede servir para asignar con propiedad nombres de adición a muchos otros tipos de compuestos, como los oxoácidos y sus iones. Dichos nombres se construyen colocando los nombres de los ligandos como prefijos del nombre (o nombres) del (de los) átomo(s) central(es). Las desinencias '-ido', '-uro', '-ato' e '-ito' de los ligandos aniónicos no cambian al generar estos prefijos.

La elección del átomo o átomos centrales es un paso clave en el proceso de nombrar un compuesto mediante la nomenclatura de adición. Si hay un átomo o átomos metálicos en el compuesto, éstos se deben elegir como átomo o átomos centrales. En algunos compuestos puede haber distintas opciones para elegir el átomo central. En el caso de que exista una alternativa entre diferentes átomos, para seleccionar a uno de ellos como átomo central, debe elegirse como tal a aquél que se encuentra el último al seguir las flechas en la secuencia de los elementos (Figura 1).

Los nombres de los iones y compuestos mononucleares, es decir, de las especies que poseen un único átomo central se forman citando los nombres de los ligandos en orden alfabético y delante del nombre del átomo central sin espacios entre ellos. Cuando hay varios ligandos iguales, se reúnen en el nombre mediante prefijos multiplicadores, es decir, 'di', 'tri', 'tetra', etc. en el caso de que sean ligandos sencillos y 'bis', 'tris', 'tetrakis', etc. cuando se trata de ligandos más complicados o para evitar cualquier ambigüedad que podría producir el uso de 'di', 'tri', etc. Los prefijos multiplicadores que no son parte inherente del nombre del ligando no afectan al orden alfabético. Si la entidad de coordinación es neutra o un catión no se cambia el nombre del átomo central. Las especies aniónicas toman la desinencia '-ato' en la nomenclatu-

ra de adición. Los nombres de adición de los iones finalizan con el número de carga.

El procedimiento general para nombrar una entidad dinuclear simétrica es el siguiente: los ligandos se nombran de la manera habitual y el afijo multiplicador 'di' se añade inmediatamente antes del nombre del átomo central. Los ligandos puente en especies dinucleares se indican con la letra griega μ colocada antes del nombre del ligando y unida a él con un guión. El término completo -v.g., ' μ -cloruro'- se separa del resto del nombre con guiones. Si hay más de un ligando puente idéntico, se emplean prefijos multiplicadores.

En las fórmulas se escribe primero el átomo central y le siguen los ligandos por orden alfabético independientemente de su carga. Los símbolos de una letra preceden a los de dos. Dentro de la fórmula se utilizan signos de inclusión (paréntesis, llaves, etc.) cuando sea necesario y la entidad de coordinación se escribe entre corchetes. En particular, los ligandos puente se colocan entre paréntesis con la letra griega μ colocada antes del símbolo, fórmula o abreviatura del ligando y unida a él con un guión. Si hay más de un ligando puente idéntico, se emplean prefijos multiplicadores.

Estas reglas son útiles en la nomenclatura de oxoácidos, oxoaniones y compuestos heteropoliatómicos.

Oxoácidos y sus derivados

Algunos compuestos sencillos inorgánicos y otros que contienen carbono tienen nombres no sistemáticos o semisistemáticos que incluyen la palabra 'ácido'. Por ejemplo: ácido bórico, ácido metabórico, ácido fosfórico, ácido difosfórico, ácido ditionoso, ácido peroxidisulfúrico, etc. Estos nombres son únicos en la nomenclatura moderna, en el sentido de que describen una propiedad química particular de los compuestos en cuestión. Por el contrario, los nombres sistemáticos se basan únicamente en la composición y la estructura. A todos estos ácidos se les pueden dar nombres sistemáticos usando los principios de las nomenclaturas de adición y de sustitución descritas anteriormente. Sin embargo, se usan habitualmente tal cantidad de nombres de 'ácidos' ya existentes (ácido sulfúrico, ácido perclórico) que la sugerencia de reemplazarlos por alternativas sistemáticas sería poco práctica y sus nombres están permitidos por la IUPAC. Otra razón para incluirlos en las recomendaciones actuales es que los citados ácidos se usan como estructuras progenitoras en la nomenclatura de algunos derivados orgánicos. Además, existe un tipo adicional de nombres que pueden considerarse una generalización de los nombres vulgares de aniones para los que se puede utilizar la llamada *nomenclatura de hidrógeno*.

La tabla completa con las fórmulas tradicionales, las de coordinación y los nombres vulgares y de coordinación de los oxoácidos permitidos por la IUPAC puede encontrarse en el Libro Rojo (tabla IR-8.1). En los nombres vulgares, los prefijos 'per—' e 'hipo—' y los sufijos '—ico' y '—oso' y sus combinaciones se utilizan para indicar el estado de oxidación del átomo central. En sus aniones se sustituyen las terminaciones '—ico' y '—oso' por '—ato' e '—ito', respectivamente. No se puede utilizar la anterior nomenclatura sistemática ni la de Stock. También se dejan de utilizar el prefijo 'orto-' para los ácidos de B, Si, P, As y Sb, por innecesario, y el 'piro—', que se sustituye por 'di—'. La ordenación en las fórmulas para los nombres vulgares es la siguiente:

hidrones ácidos-átomo central-hidrones no ácidos-oxígeno

Como entidades de coordinación se utilizan los ligandos óxido, hidróxido e hidruro (para los hidrógenos no ácidos, unidos al átomo central) ordenados alfabéticamente en los nombres y

alfanuméricamente por los símbolos y complejidad en las fórmulas. Para los aniones la ordenación es la misma. En la Tabla 7 se recogen las fórmulas y nombres de los más frecuentes y de sus aniones, que ilustran los dos tipos de nomenclatura.

Tabla 7. Nombres permitidos de oxoácidos y sus aniones.

Fórmula	Nombre vulgar aceptado	Nombre de adición
$H_3BO_3 = [B(OH)_3]$	ácido bórico	trihidroxidoboro
$H_2BO_3^- = [BO(OH)_2]^-$	dihidrogenoborato	dihidroxidooxidoborato(1–)
$HBO_3^{2-} = [BO_2(OH)]^{2-}$	hidrogenoborato	hidroxidodioxidoborato(2–)
[BO ₃] ³⁻	borato	trioxidoborato(3–)
$H_2CO_3 = [CO(OH)_2]$	ácido carbónico	dihidroxidooxidocarbono
$HCO_3^- = [CO_2(OH)]^-$	hidrogenocarbonato	hidroxidodioxidocarbonato(1–)
[CO ₃] ²⁻	carbonato	trioxidocarbonato(2–)
HOCN = [C(N)OH]	ácido ciánico	hidroxidonitrurocarbono
HNCO = [C(NH)O]	ácido isociánico · .	azanodiurooxidocarbono
$OCN^- = [C(N)O]^-$	cianato	nitrurooxidocarbonato(1–)
[SiO ₄] ⁴⁻	silicato	tetra oxidosilicato (4–)
$(H_2SiO_3)_n = \{Si(OH)_2O\}_n$	ácido metasilícico	catena-poli[dihidroxidosilicio-μ-óxido]
$\{SiO_3\}_n^{2n-}$	metasilicato	catena-poli[dioxidosilicato-μ-óxido(1–)]
[NO ₃] ⁻	nitrato	trioxidonitrato(1–)
$H_2NHO = [NH_2OH]$	hidroxilamina	hidroxidodihidruronitrógeno
$HNO_2 = [NO(OH)]$	ácido nitroso	hidroxidooxidonitrógeno
[NO ₂] ⁻	nitrito	dioxidonitrato(1–)
$H_3PO_4=[PO(OH)_3]$	ácido fosfórico	trihidroxidooxidofósforo
$H_2PO_4^- = [PO_2(OH)_2]^-$	dihidrogenofosfato	dihidroxidodioxidofosfato(1–)
$HPO_4^{2-} = [PO_3(OH)]^{2-}$	hidrogenofosfato	hidroxidotrioxidofosfato(2–)
[PO ₄] ³⁻	fosfato	tetra oxido fosfato (3–)
$H_2PHO_3 = [PHO(OH)_2]$	ácido fosfónico ^a	dihidroxidohidrurooxidofósforo
$H_3PO_3=[P(OH)_3]$	ácido fosforoso ^a	trihidroxidofósforo
$H_2PO_3^- = [PO(OH)_2]^-$	dihidrogenofosfito	dihidroxidooxidofosfato(1–)
$HPO_3^{2-} = [PO_2(OH)]^{2-}$	hidrogenofosfito	hidroxidodioxidofosfato(2–)
[PO ₃] ³⁻	fosfito	trioxidofosfato(3–)
$H_4P_2O_7 = [(HO)_2P(O)OP(O)(OH)_2]$	ácido difosfórico	μ-óxido-bis(dihidroxidooxidofósforo)
$H_3AsO_4 = [AsO(OH)_3]$	ácido arsénico	trihidroxidooxidoarsénico
$H_3AsO_3 = [As(OH)_3]$	ácido arsenoso	trihidroxidoarsénico
$H_3SbO_4 = [SbO(OH)_3]$	ácido antimónico	trihidroxidooxidoantimonio
$H_3SbO_3 = [Sb(OH)_3]$	ácido antimonoso	trihidroxidoantimonio

Tabla 7. Nombres permitidos de oxoácidos y sus aniones (cont.).

Fórmula	Nombre vulgar aceptado	Nombre de adición
$H_2SO_4 = [SO_2(OH)_2]$	ácido sulfúrico	dihidroxidodioxidoazufre
$HSO_4^- = [SO_3(OH)]^-$	hidrogenosulfato	hidroxidotrioxidosulfato(1–)
[SO ₄] ²⁻	sulfato	tetraoxidosulfato(2–)
$H_2SO_3 = [SO(OH)_2]$	ácido sulfuroso	dihidroxidooxidoazufre
$HSO_3^- = [SO_2(OH)]^-$	hidrogenosulfito	hidroxidodioxidosulfato(1–)
[SO ₃] ²⁻	sulfito	trioxidosulfato(2–)
$H_2S_2O_7 = [(HO)S(O)_2OS(O)_2(OH)]$	ácido disulfúrico	μ -óxido-bis(hidroxidodioxidoazufre)
$[S_2O_7]^{2-} = [(O)_3SOS(O)_3]^{2-}$	disulfato	μ -óxido-bis(trioxidosulfato)(2–)
$H_2SeO_4 = [SeO_2(OH)_2]$	ácido selénico	dihidroxidodioxidoselenio
[SeO ₄] ²⁻	selenato	tetra oxido selenato (2–)
$H_2SeO_3 = [SeO(OH)_2]$	ácido selenoso	dihidroxidooxidoselenio
[SeO ₃] ²⁻	selenito	trioxidoselenato(2–)
$H_2TeO_4 = [TeO_2(OH)_2]$	ácido telúrico	dihidroxidodioxidotelurio
[TeO ₄] ²⁻	telurato	tetraoxidotelurato(2–)
$H_2 TeO_3 = [TeO(OH)_2]$	ácido teluroso	dihidroxidooxidotelurio
$HCIO_4 = [CIO_3(OH)]$	ácido perclórico	hidroxidotrioxidocloro
[CIO ₄] ⁻	perclorato	tetraoxidoclorato(1—)
$HCIO_3 = [CIO_2(OH)]$	ácido clórico	hidroxidodioxidocloro
[CIO ₃] ⁻	clorato	trioxidoclorato(1–)
$HCIO_2 = [CIO(OH)]$	ácido cloroso	hidroxidooxidocloro
[CIO ₂] ⁻	clorito	dioxidoclorato(1–)
HCIO = [CIOH]	ácido hipocloroso	hidroxidocloro
[OCI] ⁻	hipoclorito	clorurooxigenato(1–)
$HBrO_4 = [BrO_3(OH)]$	ácido perbrómico	hidroxidotrioxidobromo
[BrO ₄] ⁻	perbromato	tetraoxidobromato(1–)
$HBrO_3 = [BrO_2(OH)]$	ácido brómico	hidroxidodioxidobromo
[BrO ₃] ⁻	bromato	trioxidobromato(1—)
$HBrO_2 = [BrO(OH)]$	ácido bromoso	hidroxidooxidobromo
[BrO ₂] ⁻	bromito	dioxidobromato(1–)
HBrO = [BrOH]	ácido hipobromoso	hidroxidobromo
[OBr] ⁻	hipobromito	bromurooxigenato(1–)
$HIO_4 = [IO_3(OH)]$	ácido peryódico	hidroxidotrioxidoyodo
[IO ₄] ⁻	peryodato	tetraoxidoyodato(1–)
$HIO_3 = [IO_2(OH)]$	ácido yódico	hidroxidodioxidoyodo
[IO ₃] ⁻	yodato	trioxidoyodato(1–)
$HIO_2 = [IO(OH)]$	ácido yodoso	hidroxidooxidoyodo
[IO ₂] ⁻	yodito	dioxidoyodato(1—)
HIO = [IOH]	ácido hipoyodoso	hidroxidoyodo
[OI] ⁻	hipoyodito	yodurooxigenato(1–)

a) El nombre ácido fosforoso y la fórmula H_3PO_3 se han usado en la bibliografía para $[P(OH)_3]$ y $[PHO(OH)_2]$. La elección actual de los nombres de estas dos especies está de acuerdo con los nombres de progenitores.

Hay también tres importantes oxoaniones con nombre vulgar aceptados que, sin embargo, no tienen sus correspondientes oxoácidos en la Tabla IR-8.1. Estos son: CrO_4^{2-} , cromato; $Cr_2O_7^{2-}$, dicromato y MnO_4^- , permanganato. Obsérvese que la nomenclatura tipo sistemático (ej.: tetraoxomanganato de hidrógeno) o semisistematico (ej.: ácido tetraoxomangánico(VII)) no se usan. Para nombrar ácidos o sus aniones derivados de la pérdida de uno o más hidrones se puede utilizar la nomenclatura de hidrógeno.

5. NOMENCLATURA DE HIDRÓGENO

Existe una nomenclatura alternativa de compuestos e iones que contienen hidrógeno. La palabra 'hidrogeno' (escrita sin acento, pero leída con el énfasis en la sílaba 'dro') con un prefijo multiplicador, si es relevante, se une (sin espacio) al nombre de un anión obtenido por la nomenclatura de adición y colocada dentro de los signos de inclusión pertinentes. A esta construcción le sigue (de nuevo sin espacio) un número de carga, que indica la carga neta de la especie o unidad estructural que se va a nombrar (excepto si la especie/unidad es neutra).

La nomenclatura de hidrógeno es útil cuando la conectividad (las posiciones de unión de los hidrones) en un compuesto o ion que contiene hidrones es desconocida o no se especifica (es decir, cuando no se indica de cuál de los dos o más tautómeros se trata, o cuando no se desea especificar una conectividad).

Algunas especies aniónicas habituales tienen nombres que pueden considerarse formas abreviadas de la *nomenclatura de hidrógeno* según el método anterior. Dichos nombres, constituidos por una sola palabra sin indicación explícita de la carga molecular y sin signos de inclusión se aceptan por su brevedad, uso continuado y porque no son ambiguos. Se recomienda encarecidamente que se considere esta lista como limitante por las ambigüedades que pueden surgir en muchos otros casos. Estos nombres están incluidos en la Tabla 8.

Tabla 8. Nombres de hidrógeno abreviados de algunos nombres.

Anión	Nombre de hidrógeno simplificado aceptado	Nombre de hidrógeno
$H_2BO_3^-$	dihidrogenoborato	dihidrogeno(trioxidoborato)(1–)
HBO ₃ ²⁻	hidrogenoborato	hidrogeno(trioxidoborato)(2-)
HCO ₃	hidrogenocarbonato	hidrogeno(trioxidocarbonato)(1–)
$H_2PO_4^-$	dihidrogenofosfato	dihidrogeno(tetraoxidofosfato)(1–)
HPO ₄ ²⁻	hidrogenofosfato	hidrogeno(tetraoxidofosfato)(2-)
HPHO ₃	hidrogenofosfonato	hidrogeno (hidrurotrioxido fosfato) (1-)
$H_2PO_3^-$	dihidrogenofosfito	dihidrogeno(trioxidofosfato)(1–)
HPO_3^{2-}	hidrogenofosfito	hidrogeno(trioxidofosfato)(2-)
HSO_4^-	hidrogenosulfato	hidrogeno(tetraoxidosulfato)(1-)
HSO ₃	hidrogenosulfito	hidrogeno(trioxidosulfato)(1–)

La definición estricta de la *nomenclatura de hidrógeno* impone los siguientes requerimientos:

- (1) que 'hidrogeno' esté unido al resto del nombre,
- (2) que se tiene que especificar el número de hidrógenos por medio de un prefijo multiplicador,

- (3) que se coloque la parte aniónica entre signos de inclusión,
- (4) que se especifique la carga neta de la estructura que se va a nombrar.

La nomenclatura de hidrógeno puede usarse también para iones y compuestos moleculares sin problemas de tautomería, si se desea enfatizar que la estructura tiene hidrones unidos al anión en cuestión:

Ejemplos:

 $\begin{array}{lll} HMnO_4 & hidrogeno(tetraoxidomanganato) \\ H_2MnO_4 & dihidrogeno(tetraoxidomanganato) \\ H_2CrO_4 & dihidrogeno(tetraoxidocromato) \\ HCrO_4^- & hidrogeno(tetraoxidocromato)(1-) \\ H_2Cr_2O_7 & dihidrogeno(heptaoxidodicromato) \end{array}$

 H_2O_2 dihidrogeno(peróxido) HO_2^- hidrogeno(peróxido)(1–) H_2S dihidrogeno(sulfuro)

Obsérvese la diferencia entre éstos y los nombres de composición como 'peróxido de hidrógeno' para H_2O_2 y 'sulfuro de hidrógeno' para H_2S (en los que se halla la preposición 'de' entre los componentes electronegativo y electropositivo del nombre).

6. NOMBRES DE REEMPLAZO FUNCIONAL DE DERIVADOS DE OXOÁCIDOS

En la nomenclatura de reemplazo funcional, la sustitución de grupos =O u -OH en oxoácidos progenitores (tales como $O\rightarrow S$, $O\rightarrow OO$, $OH\rightarrow Cl$, etc.) se indica mediante el uso de infijos o prefijos (Tabla 9).

Tabla 9. Uso de prefijos e infijos.

Operación de reemplazo	Prefijo	Infijo
OH→NH ₂	amid(o)	amid(o)
0→00	peroxi	peroxo
O→S	tio	tio
O→Se	seleno	seleno
O→Te	teluro	teluro
OH→F	fluoro	fluorur(o)
OH→Cl	cloro	clorur(o)
OH→Br	bromo	bromur(o)
OH→I	yodo	yodur(o)
OH→CN	ciano	cianur(o)

Los nombres de reemplazo funcional pueden, evidentemente, usarse para nombrar los derivados de los ácidos progenitores. Sin embargo, ello equivale a introducir un sistema adicional innecesario en la nomenclatura inorgánica y siempre se pueden usar las nomenclaturas de adición y de sustitución. No obstante, la IUPAC admite el nombre de varias especies inorgánicas que se pueden considerar derivadas de oxoácidos u oxoaniones mediante operaciones de reemplazo. Sus nombres vulgares derivan de ellas por el método de los prefijos arriba citados. A modo de ejemplo se incluye una tabla resumida con los nombres vulgares aceptados, nombres de reem-

plazo funcional y nombres sistemáticos (de adición) de algunos compuestos. Las fórmulas se dan en el formato clásico y también como entidades de coordinación (Tabla 10).

Tabla 10. Fórmulas y nombres de derivados de oxoácidos.

Fórmula	Nombre vulgar aceptado funcional o de clase funcional	Nombre de reemplazo	Nombre sistemático
$HNO_4 = [NO_2(OOH)]$	ácido peroxinítrico	ácido peroxinítrico	(dioxidanuro)dioxidonitrógeno
$NO_4^- = [NO_2(OO)]^-$	peroxinitrato	peroxinitrato	dioxidoperoxidonitrato(1–)
$NO_2NH_2 = [N(NH_2)O_2]$	nitramida	amida nítrica	amidodioxidonitrógeno
NOCI = [NCIO]	cloruro de nitrosilo	cloruro de nitrosilo	clorurooxidonitrógeno
$[PO_5]^{3-} = [PO_3(OO)]^{3-}$	peroxifosfato	fosforoperoxoato	trioxidoperoxidofosfato(3–)
$POCl_3 = [PCl_3O]$	tricloruro de fosforilo,	tricloruro de fosforilo	tricloruro oxido fós for o
$H_2SO_5 = [SO_2(OH)(OOH)]$	ácido peroxisulfúrico	ácido sulfuroperoxóico	(dioxidanuro)hidroxidodioxidoazufre
$[SO_5]^{2-} = [SO_3(OO)]^{2-}$	peroxisulfato	sulfuroperoxoato	trioxidoperoxidosulfato(2–)
$[S_2O_8]^{2-} = [O_3SOOSO_3]^{2-}$	peroxidisulfato	2-peroxidisulfato	μ -peróxido-bis(trioxidosulfato)(2–)
$H_2S_2O_3 = [SO(OH)_2S]$	ácido tiosulfúrico	O-ácido sulfurotióico	dihidroxidooxidosulfuroazufre
$S_2O_3^{2-} = [SO_3S]^{2-}$	tiosulfato	sulfurotioato	trioxidosulfurosulfato(2–)
$[SO_2S]^{2-}$	tiosulfito	sulfurotioito	dioxidosulfurosulfato(2–)
$SO_2Cl_2 = [SCl_2O_2]$	dicloruro de sulfurilo,	dicloruro de sulfurilo	diclorurodioxidoazufre
$SOCl_2 = [SCl_2O]$	cloruro de tionilo	dicloruro sulfuroso	diclorurooxidoazufre
[S(NH ₂)O ₂ (OH)]	ácido sulfámico	ácido sulfuramídico	amidohidroxidodioxidoazufre
[S(NH2)2O2]	diamida sulfúrica	diamida sulfúrica	diamidodioxidoazufre
HSCN = [C(N)(SH)]	ácido tiociánico		nitrurosulfanurocarbono
SCN ⁻	tiocianato		nitrurosulfurocarbonato(1-)

Compuestos ternarios, sales dobles y compuestos de adición

Al disponer de los nombres vulgares, de sustitución y de adición de iones heteroatómicos o de compuestos neutros y de sus fórmulas, la nomenclatura de compuestos diferentes de los binarios es relativamente sencilla mediante los nombres de composición y si se tiene en cuenta que la nomenclatura tiene una base binaria. Entre los compuestos del título se encuentran clases de compuestos como hidróxidos, óxidos o peróxidos, que se tratan en ocasiones separadamente, sales de oxoaniones u oxianiones ácidos o compuestos que contienen cationes heteropoliatómicos.

Los compuestos inorgánicos, en general, pueden ser combinaciones de cationes, aniones y especies neutras. Por convenio, el nombre de un compuesto está formado por los nombres de las especies que lo componen en el siguiente orden: los aniones preceden a los cationes y los componentes neutros van al final. El número de cada entidad presente se tiene que especificar con el fin de reflejar la composición del compuesto. Con este propósito, los prefijos multiplicadores se añaden al nombre de cada especie. Los prefijos a usar con los nombres de entidades sencillas son 'di', 'tri', 'tetra', etc., o 'bis()', 'tris()', 'tetrakis()', etc., para el caso de especies que ellas mismas contienen prefijos multiplicadores o localizadores (Tabla 11). También hay que tener cuidado en las situaciones en las que un prefijo multiplicador simple puede ser ma-

linterpretado, p. ej., tris(yoduro) tiene que usarse para $3I^-$ en lugar de triyoduro (que se usa para I_3^-) y bis(fosfato) en lugar de difosfato (que se usa para $P_2O_7^{4-}$).

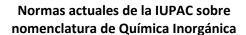
Tabla 11. Nombres de composición.

Fórmula	Nombre	Fórmula	Nombre
NaOH	hidróxido de sodio	Ca ₃ (PO ₄) ₂	bis(fosfato) de tricalcio
NH ₄ Br	bromuro de amonio	Ca ₂ P ₂ O ₇	difosfato de dicalcio
BaO ₂	peróxido de bario o dióxido(2–) de bario	KHSO ₄	hidrogenosulfato de potasio o hidroxidotrioxidosulfato(12) de potasio
NH ₄ NO ₃	nitrato de amonio	Na(HS)	hidrogeno(sulfuro) de sodio

En las fórmulas de las sales y sales dobles, los cationes preceden a los aniones. En los nombres se citan al contrario, es decir, los nombres de los aniones preceden a los de los cationes. Dentro de cada uno de estos grupos el orden es el alfabético. Obsérvese que este orden de componentes puede diferir del orden de los correspondientes componentes en la fórmula.

Ejemplos:

KMgF₃ fluoruro de magnesio y potasio


BiClO **c**loruro **ó**xido de bismuto ZnI(OH) **h**idróxido **y**oduro de cinc SrFeO₃ trióxido de **e**stroncio y **h**ierro

En las fórmulas de los compuestos de adición, o de los compuestos que pueden ser considerados formalmente como tales, las fórmulas de las entidades o moléculas componentes se citan en el orden creciente de su número; si se encontrasen en igual número, se citarán en orden alfanumérico según el orden de los símbolos atómicos y de sus subíndices. En compuestos de adición que contienen agua, ésta se cita convencionalmente la última.

Ejemplos:

 $3CdSO_4 \cdot 8H_2O$ sulfato de cadmio—agua (3/8) $Na_2CO_3 \cdot 10H_2O$ carbonato de sodio decahidrato $BF_3 \cdot 2H_2O$ trifluoruro de boro—agua (1/2) $8H_2S \cdot 46H_2O$ sulfuro de hidrógeno—agua (8/46)

Los nombres de cada uno de los componentes individuales de un compuesto de adición generalizado se construyen mediante el sistema de nomenclatura apropiado, ya sea de composición, de sustitución o de adición. El nombre completo del compuesto se forma conectando los nombres de los componentes con guiones extra-largos ('em'); las proporciones de los componentes se indican después del nombre por medio de un descriptor estequiométrico que está formado por números arábigos separados por una barra o barras. El descriptor, que se coloca entre paréntesis, está separado del nombre del compuesto por un espacio. En el caso especial de los hidratos, los prefijos multiplicadores pueden ser usados con el término 'hidrato'.

Ejemplos:

BH₃·NH₃ amoniaco—borano (1/1)

 $MgSO_4 \cdot 7H_2O$ sulfato de magnesio heptahidrato $CdSO_4 \cdot 6NH_3$ sulfato de cadmio—amoniaco (1/6)

AlK(SO₄)₂·12H₂O bis(sulfato) de aluminio y potasio—agua (1/12)

Al₂(SO₄)₃·K₂SO₄·24H₂O (1/1/24) tris(sulfato) de dialuminio—sulfato de dipotasio—agua

7. BIBLIOGRAFÍA

1 M. Á. Ciriano y P. Román,. *Guía breve para la nomenclatura de química inorgánica*, traducción de la versión inglesa de la IUPAC. Disponible en inglés y castellano: <u>bit.ly/1M76uop</u>.

- N. G. Connelly, T. Damhus, R. M. Hartshom y A. T. Hutton (Eds.), *Nomenclature of Inorganic Chemistry. IUPAC Recommendations 2005*, The Royal Society of Chemistry, Cambridge, 2005. Versión en castellano: Ciriano, M.A.; Román, P. Prensas Universitarias de Zaragoza, 2007. ISBN 978-84-7733-905-2.
- 3 C. Pico, I. Álvarez Serrano, M. L. López, M. L. Veiga, M. A. Arillo y P. Martín, *Química e Industria* **2014** (609) 34–41.

RECOMENDACIONES PARA LA ENSEÑANZA DE LA NOMENCLATURA DE QUÍMICA INORGÁNICA EN LA ENSEÑANZA SECUNDARIA

Luis Ignacio García González Elvira González Aguado Salvador Olivares Campillo

"Es necesario un método constante de denominación que ayude a la inteligencia y alivie la memoria."

Guyton de Morveau

Con estas recomendaciones se pretende:

- ✓ Adoptar criterios lógicos (que ayuden a la inteligencia), adaptados a la edad de nuestros alumnos y a sus capacidades.
- ✓ Considerar la nomenclatura como un sistema que sirva para entendernos (aliviando la memoria) a la hora de utilizar compuestos químicos.
- Recomendar una programación espiral, de forma que en cada nivel se vayan introduciendo, de forma gradual, la nomenclatura de compuestos más complejos.
- ✓ No usar nomenclatura errónea (no admitida por la IUPAC)

Las recomendaciones se formulan en tres niveles distintos:

1. Lo que ha de hacerse.

Se indica lo que se considera deberían saber nuestros alumnos para cada uno de los niveles de enseñanza (2.º ESO, 3.º ESO, 4.º ESO y Bachillerato). Los contenidos se han distribuido por niveles considerando lo establecido en el RD 1105/2014 de 26 de diciembre por el que se establece el currículo básico de la Educación Secundaria Obligatoria y del Bachillerato.

2. Lo que (como ampliación) puede hacerse.

Se incluyen los conocimientos que podríamos considerar como ampliación para cada nivel.

Qué se dé, dependerá del planteamiento didáctico del profesor, del nivel del grupo y de las necesidades planteadas.

3. Lo que se desaconseja hacer.

Se detalla lo que no está aconsejado hacer, bien porque ese tipo de nomenclatura está considerada incorrecta en la actualidad, o bien porque se considera que pedagógicamente no es recomendable en el nivel considerado.

De forma resumida se recomienda:

- Adoptar para la ESO la nomenclatura de composición para las combinaciones binarias e hidróxidos, usando prefijos multiplicadores para indicar las proporciones de los constituyentes (como ampliación pueden introducirse los números de oxidación y los números de carga).
- 2. Utilizar únicamente los nombres vulgares admitidos por la IUPAC.
- **3. Utilizar la tabla periódica** como apoyo y justificación de los números de oxidación que es necesario conocer (ver más adelante).
- 4. Recurrir, fundamentalmente, a los nombres vulgares admitidos por la IUPAC para nombrar oxoácidos y oxosales (ácido sulfúrico, carbonato de sodio... etc),
- 5. Reservar para el Bachillerato la nomenclatura de peróxidos, oxoácidos del P, y B y la nomenclatura de sales ácidas y sales hidratadas.
- 6. Introducir en este nivel la nomenclatura de composición y de adición establecida por la IUPAC.

Lo que dice la LOMCE sobre nomenclatura

"En el primer ciclo de la ESO (2.º y 3.º) se deben afianzar y ampliar los conocimientos que sobre las Ciencias de la Naturaleza han sido adquiridos por los alumnos en la etapa de Educación Primaria. El enfoque con el que se busca introducir los distintos conceptos ha de ser fundamentalmente fenomenológico; de este modo, la materia se presenta como la explicación lógica de todo aquello a lo que el alumno está acostumbrado y conoce. Es importante señalar que en este ciclo la materia de Física y Química puede tener carácter terminal, por lo que su objetivo prioritario ha de ser el de contribuir a la cimentación de una cultura científica básica".

Física y Química. 2.º y 3.º ESO (primer ciclo)					
Bloque 2. La materia					
Contenidos	Estándares de aprendizaje				
Formulación y nomenclatura de compuestos binarios siguiendo las normas IUPAC.	Formular y nombrar compuestos binarios siguiendo las normas IUPAC.	Utiliza el lenguaje químico para nombrar y formular compuestos binarios siguiendo las normas IU- PAC.			

Parece que queda claro que en 2.º y 3.º de ESO el currículo establece *que la enseñanza de la nomenclatura se reduce a la de los compuestos binarios*, por tanto las propuestas serían:

2.º ESO

1. Lo que ha de hacerse

- ✓ Escribir los descriptores (nombres y fórmulas) de compuestos binarios utilizando la **nomen- clatura de composición**, usando **solo prefijos multiplicadores** para indicar las proporciones de los constituyentes.
- ✓ Considerar los nombres vulgares admitidos por la IUPAC de **amoniaco** para el NH_3 , **metano** para el CH_4 y **agua** para el H_2O .
- ✓ Considerar el nombre de ácido clorhídrico para las disoluciones del cloruro de hidrógeno (HCl) en agua. No es el nombre de un compuesto químico.

Tabla 1. Ejemplos de nomenclatura de compuestos binarios (2.º ESO).

Fórmula	Nombre	
СО	monóxido de carbono	
Fe ₂ O ₃	trióxido de dihierro	
Na ₂ O	óxido de disodio	
CoH ₃	trihidruro de cobalto	
NH ₃	trihidruro de nitrógeno, amoniaco	
HCI	cloruro de hidrógeno	
PCl ₃	tricloruro de fósforo	
SF ₆	hexafluoruro de azufre	
AgBr	bromuro de plata	

2. Lo que (como ampliación) puede hacerse

✓ Escribir los nombres y las fórmulas (descriptores) de los hidróxidos (que son realmente compuestos ternarios, pero que su nomenclatura sigue las pautas de los binarios) utilizando la nomenclatura de composición, usando prefijos multiplicadores para indicar las proporciones de los constituyentes.

Tal	ola	2.	Ljen	ıplos	amp	liación	(2º	ESO).

Fórmula	Nombre	
NaOH	hidróxido de sodio	
Ca(OH) ₂	dihidróxido de calcio	
Al(OH) ₃	trihidróxido de aluminio	
Fe(OH) ₂	dihidróxido de hierro	

3. Lo que se desaconseja hacer (por ser incorrecto o pedagógicamente desaconsejable)

- ✓ Nombrar los óxidos no metálicos como anhídridos y utilizar la nomenclatura tradicional (terminación -oso e -ico) en compuestos binarios, hidróxidos y sales.
- ✓ Nombrar compuestos binarios usando el número de oxidación o el de carga para indicar las proporciones de los constituyentes.
- ✓ Recurrir a la memorización de tablas de números de oxidación.

3.º ESO

1. Lo que ha de hacerse

- ✓ Conocer la nomenclatura de iones monoatómicos introduciendo el número de carga.
- ✓ Escribir los nombres y las fórmulas (descriptores) de los compuestos binarios utilizando la **nomenclatura de composición**, usando *únicamente* prefijos multiplicadores para indicar las proporciones de los constituyentes.
- ✓ Considerar los nombres de ácido fluorhídrico, clorhídrico, bromhídrico y yodhídrico para las disoluciones de los halogenuros de hidrógeno en agua, y el de ácido sulfhídrico. No son nombres de compuestos químicos.
- ✓ Nombrar las combinaciones binarias del hidrógeno con los elementos de los grupos del C y del N con los nombres:

CH₄: metano SiH₄: silano

NH₃: azano, amoniaco

PH₃: fosfano⁽¹⁾
AsH₃: arsano⁽²⁾
SbH₃: estibano⁽³⁾

⁽¹⁾No está permitido fosfina. ⁽²⁾No está permitido arsina. ⁽³⁾No está permitido estibina.

Tabla 3. Ejemplos de nomenclatura de compuestos binarios (3.º ESO).

Fórmula	Nombre
CO ₂	dióxido de carbono
FeO	óxido de hierro, monóxido de hierro
K ₂ O	óxido de dipotasio
CoH ₂	dihidruro de cobalto
NH ₃	azano, trihidruro de nitrógeno, amoniaco
НІ	yoduro de hidrógeno
PCI ₅	pentacloruro de fósforo
SF ₄	tetrafluoruro de azufre
AgCl	cloruro de plata
PbS	sulfuro de plomo, monosulfuro de plomo
PH ₃	fosfano, trihidruro de fósforo

2. Lo que (como ampliación) puede hacerse

- ✓ Escribir las fórmulas de compuestos binarios más comunes nombrados sin prefijos multiplicadores por no existir ambigüedad (óxido de sodio, óxido de aluminio, hidruro de calcio, cloruro de cinc). Para escribir las fórmulas de estos compuestos deberán de conocer (usar la tabla periódica para su justificación):
 - Los estados de oxidación del hidrógeno: –1 en las combinaciones con metales y +1 con no metales.
 - Los estados de oxidación de los calcógenos: oxígeno: -2; azufre (sulfuros): -2.
 - Flúor (-1). Otros halógenos (combinaciones no oxigenadas): -1.
 - Los metales cuyo estado de oxidación puede sobreentenderse: +1 para los alcalinos y la plata; +2 para los alcalinotérreos y el cinc y +3 para el aluminio.
- ✓ Nombrar los compuestos binarios usando el número de oxidación (no es necesario estudiar nuevos números de oxidación, ya que, si se conocen los dados más arriba, se pueden deducir de la fórmula considerando que la suma debe dar cero)
- ✓ Escribir los nombres y las fórmulas (descriptores) de los hidróxidos (que son realmente compuestos ternarios, pero que su nomenclatura sigue las pautas de los binarios) utilizando la **nomenclatura de composición**, usando prefijos multiplicadores.

Fórmula	Nombre	
CoCl ₂	cloruro de cobalto(II)	
FeO	óxido de hierro(II)	
K ₂ O	óxido de potasio	
NiH ₃	hidruro de níquel(III)	
Al ₂ O ₃	óxido de aluminio	
PbI ₂	yoduro de plomo(II)	
ZnH ₂	hidruro de cinc	
SF ₄	fluoruro de azufre(IV)	
FeCl ₃	cloruro de hierro(III)	
Fe(OH) ₃	trihidróxido de hierro	

Tabla 4. Ejemplos ampliación (3º ESO).

3. Lo que se desaconseja hacer (por ser incorrecto o pedagógicamente desaconsejable)

- ✓ Nombrar los óxidos no metálicos como anhídridos y utilizar la nomenclatura tradicional (terminación -oso e -ico) en compuestos binarios e hidróxidos.
- ✓ Nombrar compuestos binarios usando el número de carga (en este nivel tienen dificultades para identificar los compuestos con enlace iónico y covalente) para indicar las proporciones de los constituyentes.

4.º ESO

Física y Química. 4.º ESO (segundo ciclo)				
Bloque 2. La materia				
Contenidos	Criterios de evaluación	Estándares de aprendizaje		
Formulación y nomenclatura de compuestos inorgánicos según las normas IUPAC.	Formular y nombrar compuestos inorgánicos ternarios según las normas IUPAC.	Nombra y formula compuestos inorgánicos ternarios siguiendo las normas de la IUPAC.		

1. Lo que ha de hacerse

✓ Escribir los nombres y las fórmulas (descriptores) de los compuestos binarios utilizando la **nomenclatura de composición**, usando para indicar las proporciones de los constituyentes:

Prefijos multiplicadores.

El número de oxidación, para lo cual necesitan conocer (usar la tabla periódica):

- Los estados de oxidación del hidrógeno: –1 en las combinaciones con metales y +1 con no metales.
- Los estados de oxidación de los calcógenos: oxígeno: -2; azufre (sulfuros): -2.
- Flúor (-1). Otros halógenos (combinaciones no oxigenadas): -1.
- Los metales cuyo estado de oxidación puede sobreentenderse: +1 para los alcalinos y la plata; +2 para los alcalinotérreos y el cinc y +3 para el aluminio.

Otros estados de oxidación se pueden deducir considerando la regla de suma cero.

✓ Nombrar las combinaciones binarias del hidrógeno con los elementos de los grupos del C y del N con los nombres:

CH₄: metano SiH₄: silano

NH₃: azano, amoniaco

PH₃: fosfano⁽¹⁾
AsH₃: arsano⁽²⁾
SbH₃: estibano⁽³⁾

 $^{(1)}$ No está permitido fosfina. $^{(2)}$ No está permitido arsina. $^{(3)}$ No está permitido estibina

✓ Escribir las fórmulas de compuestos binarios más comunes nombrados sin prefijos multiplicadores por no existir ambigüedad (óxido de sodio, óxido de aluminio, hidruro de calcio, cloruro de cinc). Para escribir las fórmulas de estos compuestos deberán de conocer los números de oxidación citados más arriba.

Recomendaciones Enseñanza Secundaria (4.º ESO)

- ✓ Considerar los nombres de ácido fluorhídrico, clorhídrico, bromhídrico y yodhídrico para las disoluciones de los halogenuros de hidrógeno en agua y el de ácido sulfhídrico. No son nombres de compuestos químicos.
- ✓ Escribir los nombres y las fórmulas (descriptores) de los hidróxidos (que son realmente compuestos ternarios, pero que su nomenclatura sigue las pautas de los binarios) utilizando la nomenclatura de composición, usando prefijos multiplicadores.
- ✓ Introducir, exclusivamente, cuatro oxoácidos con el nombre vulgar admitido por la IUPAC:

HNO₃ ácido nítrico.

H₂SO₄ ácido sulfúrico.

H₂CO₃ ácido carbónico.

H₃PO₄ ácido fosfórico.

- ✓ Introducir las oxosales correspondientes (nombres vulgares admitidos) utilizando solo metales alcalinos y Ag, metales alcalinotérreos y Zn y Al.
- ✓ Conocer la nomenclatura de iones monoatómicos introduciendo el número de carga.
- ✓ Introducir la nomenclatura de aniones heteropoliatómicos, usando el nombre vulgar admitido por la IUPAC (sulfato, nitrato, carbonato, fosfato).

Fórmula Nombre SO_3 trióxido de azufre, óxido de azufre(VI) óxido de dipotasio, óxido de potasio K_2O dihidruro de cobalto, hidruro de hierro(II) FeH₂ azano, trihidruro de nitrógeno, amoniaco NH_3 HI yoduro de hidrógeno Pb(OH)₂ dihidróxido de plomo SF₄ tetrafluoruro de azufre HNO_3 ácido nítrico $ZnSO_4$ sulfato de cinc Sn²⁺ estaño(2+) $NO_3^$ nitrato

Tabla 5. Ejemplos de nomenclatura de compuestos (4.º ESO).

2. Lo que (como ampliación) puede hacerse

- ✓ Escribir los nombres y las fórmulas (descriptores) de los compuestos binarios utilizando la **nomenclatura de composición**, usando para indicar las proporciones de los constituyentes los números de carga (solo utilizable en compuestos iónicos).
- ✓ Escribir los nombres y las fórmulas (descriptores) de los hidróxidos utilizando la nomenclatura de composición, usando para indicar las proporciones de los constituyentes los números oxidación y de carga.

Recomendaciones Enseñanza Secundaria (4.º ESO)

Grupo de trabajo Secundaria

- ✓ Considerar para los ácidos de los halógenos los nombres vulgares admitidos por IUPAC (hipo...oso, oso, ico, per... ico).
- ✓ Introducir las oxosales (nombres vulgares admitidos) utilizando metales con número de oxidación variable. Usar los números de oxidación o carga para indicar el estado de oxidación del metal.

Tabla 6. Ejemplos ampliación (4.º ESO).

Fórmula	Nombre
FeCl ₂	cloruro de hierro(II), cloruro de hierro(2+)
Cu(OH) ₂	hidróxido de cobre(II), hidróxido de cobre(2+)
HCIO ₃	ácido clórico
CuSO ₄	sulfato de cobre(II), sulfato de cobre(2+)
Pb(NO ₃) ₄	nitrato de plomo(IV), nitrato de plomo(4+)

3. Lo que se desaconseja hacer (por ser incorrecto o pedagógicamente desaconsejable)

- ✓ Nombrar los óxidos no metálicos como anhídridos y utilizar la nomenclatura tradicional (terminación oso e ico) en compuestos binarios e hidróxidos.
- ✓ Utilizar la nomenclatura sistemática para oxoácidos (tetraoxosulfato(VI) de hidrógeno) y oxosales (trioxonitrato(V) de potasio).

Bachillerato

Física y Química. 1.º Bachillerato		
Bloque 2. La materia		
Contenidos	Criterios de evaluación	Estándares de aprendizaje
Estequiometría de las reacciones. Reactivo limitante y rendimiento de una reacción. Química e industria	Formular y nombrar correcta- mente las sustancias que inter- vienen en una reacción química dada	Escribe y ajusta ecuaciones químicas sencillas de distinto tipo (neutralización, oxidación y síntesis) y de interés bioquímico o industrial.
Química. 2.º Bachillerato		
No existe mención alguna a la nomenclatura inorgánica		

1.º Bachillerato

Podría interpretarse que en el criterio "Formular correctamente las sustancias que intervienen en una reacción química dada" puede incluirse la nomenclatura inorgánica.

1. Lo que ha de hacerse

- ✓ Escribir los nombres y las fórmulas (descriptores) de los **compuestos binarios** utilizando la **nomenclatura de composición**, usando prefijos multiplicadores, números de oxidación y números de carga para indicar las proporciones de los constituyentes. Incluir los peróxidos de los metales alcalinos y alcalinotérreos.
- ✓ Escribir las fórmulas de compuestos binarios más comunes nombrados sin prefijos multiplicadores por no existir ambigüedad (óxido de sodio, óxido de aluminio, hidruro de calcio, cloruro de cinc). Para escribir las fórmulas de estos compuestos deberán de conocer (usar la tabla periódica):
 - Los estados de oxidación del hidrógeno: –1 en las combinaciones con metales y +1 con no metales.
 - Los estados de oxidación de los calcógenos: oxígeno: -2; azufre (sulfuros): -2.
 - Flúor (-1). Otros halógenos (combinaciones no oxigenadas): -1.
 - Los metales cuyo estado de oxidación puede sobreentenderse: +1 para los alcalinos y la plata; +2 para los alcalinotérreos y el cinc y +3 para el aluminio.
- ✓ Considerar los nombres de ácido fluorhídrico, clorhídrico, bromhídrico y yodhídrico para las disoluciones de los halogenuros de hidrógeno en agua, y el de ácido sulfhídrico. No son nombres de compuestos químicos.

Recomendaciones Enseñanza Secundaria (Bachillerato)

- ✓ Escribir los nombres y las fórmulas (descriptores) de los **hidróxidos** utilizando la **nomenclatura de composición**, usando prefijos multiplicadores, números de oxidación y números de carga para indicar las proporciones de los constituyentes.
- ✓ Nomenclatura de los oxoácidos con los nombres vulgares admitidos, incluyendo los de los halógenos (hipo...oso, oso, ico, per... ico) y los del P (ácido fosfórico: H₃PO₄) y B (ácido bórico: H₃BO₃).
- ✓ Nomenclatura de las oxosales con los nombres vulgares admitidos, incluyendo permanganatos, cromatos y dicromatos, oxosales ácidas e hidratadas.
- ✓ Conocer la nomenclatura de iones monoatómicos (con número de carga) y heteropoliatómicos (nombres vulgares admitidos).

Tabla 7. Ejemplos de nomenclatura de compuestos (1.º Bachillerato).

Fórmula	Nombre
Co ₂ O ₃	trióxido de dicobalto, óxido de cobalto(III), óxido de cobalto(3+)
CaO ₂	peróxido de calcio, dióxido de calcio, óxido de calcio
Al_2O_3	trióxido de dialuminio, óxido de aluminio
H ₃ PO ₄	ácido fosfórico
NaMnO ₄	permanganato de sodio
K ₂ Cr ₂ O ₇	dicromato de potasio
NaHCO ₃	hidrogenocarbonato de sodio
Fe ₂ (SO ₄) ₃	sulfato de hierro(III), sulfato de hierro(3+)
NH ₄ ⁺	amonio
NO ₂	nitrito
H ₂ O ₂	dióxido de dihidrógeno, peróxido de hidrógeno,
Na ₂ O ₂	dióxido de disodio, peróxido de sodio, dióxido(2–) de sodio

2. Lo que (como ampliación) puede hacerse

✓ Introducir la nomenclatura de hidrógeno para los oxoácidos

Tabla 8. Ejemplos de nomenclatura de oxoácidos. Ampliación (1.º Bachillerato).

Fórmula	Nombre
HNO ₃	hidrogeno(trioxidonitrato)
HClO ₂	hidrogeno(dioxidoclorato)
H ₂ SO ₄	dihidrogeno(tetraoxidosulfato)
H ₃ PO ₄	trihidrogeno(tetraoxidofosfato)
H ₂ CO ₃	dihidrogeno(trioxidocarbonato)
HBrO	hidrogeno(oxidobromato)

[✓] Introducir la nomenclatura de adición para los iones heteropoliatómicos

Recomendaciones Enseñanza Secundaria (Bachillerato)

Tabla 9. Ejemplos de nomenclatura de iones heteropoliatómicos. Ampliación (1.º Bachillerato).

Fórmula	Nombre
NO ₃	trioxidonitrato(1-)
CIO ₂	dioxidoclorato(1-)
SO ₄ ²⁻	tetraoxidosulfato(2-)
PO ₄ ³⁻	tetraoxidofosfato(3-)
CO ₃ ²⁻	trioxidocarbonato(2-)
Cr ₂ O ₇ ²⁻	heptaoxidodicromato(2-)
MnO ₄	tetraoxidomanganato(1-)

✓ Introducir las **nomenclaturas de composición** y de **adición** para las **oxosales**.

Tabla 10. Ejemplos de nomenclatura de oxosales. Ampliación (1.º Bachillerato).

Fórmula	Nomenclatura de composición	Nomenclatura de adición
NaNO ₃	trioxidonitrato de sodio	trioxidonitrato(1–) de sodio
K ₂ CO ₃	trioxidocarbonato de dipotasio	trioxidocarbonato(2–) de potasio
Fe ₂ (SO ₄) ₃	tris(tetraoxidosulfato) de dihierro	tetraoxidosulfato(2–) de hierro(3+)
K ₂ Cr ₂ O ₇	heptaoxidodicromato de dipotasio	heptaoxidodicromato(2–) de potasio
Ca ₃ (PO ₄) ₂	bis(tetraoxidofosfato) de tricalcio	tetraoxidofosfato(3–) de calcio
NaHCO ₃	hidrogeno(trioxidocarbonato) de sodio	hidrogeno(trioxidocarbonato)(1–) de sodio
Co(HCO ₃) ₂	bis[hidrogeno(trioxidocarbonato)] de cobalto	hidrogeno(trioxidocarbonato)(1–) de co- balto(2+)
NH ₄ H ₂ PO ₄	dihidrogeno(tetraoxidofosfato) de amonio	dihidrogeno(tetraoxidofosfato)(1–) de amonio
Fe(HCO ₃) ₂	bis[hidrogeno(trioxidocarbonato)] de hierro	hidrogeno(trioxidocarbonato)(1–) de hie- rro(2+)

2.º Bachillerato

1. Lo que (como ampliación) puede hacerse

En 2.º de Bachillerato los estudiantes ya poseen nociones sobre la estructura y geometría de las moléculas, circunstancia que puede aprovecharse para introducir la nomenclatura de adición para los óxoácidos más comunes, como muestra de nomenclatura que facilita información sobre la estructura de los compuestos.

Tabla 11. Ejemplos de nomenclatura de oxoácidos. Ampliación (1.º Bachillerato).

Fórmula	Fórmula estructural	Nomenclatura de adición
HNO ₃	[NO ₂ (OH)]	hidroxidodioxidonitrógeno
HCIO ₂	[CIO(OH)]	hidroxidooxidocloro
H ₂ SO ₄	[SO ₂ (OH) ₂]	dihidroxidodioxidoazufre
H ₂ CO ₃	[CO(OH) ₂]	dihidroxidooxidocarbono
H ₃ PO ₄	[PO(OH) ₃]	trihidroxidooxidofósforo

INFORMACIÓN COMPLEMENTARIA^[5]

La secuencia de los elementos (Tabla VI del Libro Rojo de la IUPAC)

Es conveniente tener presente que la secuencia de los elementos que se muestra en la Tabla VI (Libro Rojo, p. 261) *no pretende ser una clasificación de los elementos de acuerdo con su electronegatividad*. La electronegatividad del oxígeno, por ejemplo, es superior a la del cloro, sin embargo aquí el cloro está en la secuencia antes que el oxígeno.

Según se lee en el Libro Rojo (p. 70):

"Al construir el nombre estequiométrico de un compuesto binario, uno de los elementos se clasifica como el constituyente electropositivo y el otro como el constituyente electronegativo. El constituyente electropositivo es, por convenio, el elemento que aparece en último lugar en la secuencia de la Tabla VI"

La tabla, por tanto, sirve para fijar el orden en el que los constituyentes se van a colocar a la hora de escribir la fórmula, pero *no indica los valores reales de electronegatividad de los componentes*. La idea es dividir a los constituyentes del compuesto en *formalmente* electropositivos y electronegativos.

Probablemente, en secundaria, y para evitar confusiones, lo más conveniente sea hablar simplemente de orden de colocación de los elementos (secuencia) y evitar cualquier referencia a la electronegatividad.

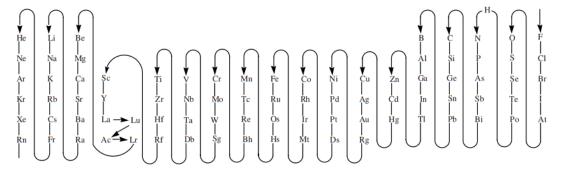
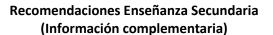



Tabla VI (Libro Rojo, p. 261)

Cloruro de hidrógeno y ácido clorhídrico

La fórmula del cloruro de hidrógeno (gas) es HCl, puesto que el cloruro de hidrógeno es un compuesto con una composición definida e invariable. El ácido clorhídrico, sin embargo, es el nombre que se da a las disoluciones del HCl en agua. Es, por tanto, una mezcla de composición variable a la que no es correcto asignar la fórmula HCl. No es nombre de compuesto químico.

La misma consideración se puede hacer respecto a los ácidos fluorhídrico, bromhídrico, yodhídrico y sulfhídrico. No son nombres de compuestos químicos.

Números de oxidación y carga

El número de oxidación está relacionado con la pérdida (o ganancia) de electrones que los elementos experimentan al formar los compuestos.

En los compuestos iónicos no hay dudas sobre el particular, ya que al existir transferencia electrónica existe una ganancia (número de oxidación negativo) o pérdida de electrones (número de oxidación positivo).

En los compuestos covalentes el número de oxidación se obtiene asignando, formalmente, los dos electrones del par compartido al átomo más electronegativo, aunque realmente no hay ganancia o pérdida de electrones neta por ninguno de los dos átomos.

Si los átomos enlazados son idénticos (Cl₂, por ejemplo) se asigna un electrón del par a cada átomo, resultando un número de oxidación igual a cero.

El número de carga, sin embargo, indica la carga de los iones.

Podremos hablar, por tanto, de número de oxidación tanto en compuestos iónicos como covalentes, pero el número de carga podremos utilizarlo, únicamente, cuando tratemos con compuestos iónicos.

Por tanto, aunque el número de oxidación sea algo definido según determinada reglas, y su aplicación pueda conducir a ambigüedades, también es cierto que en los niveles de secundaria la incertidumbre en su asignación es mínima y puede usarse con más generalidad que el de carga.

La introducción de números de oxidación y de carga podría confundir en los niveles más bajos, de ahí que en 2.º de ESO se recurra únicamente a los prefijos multiplicadores y se haya optado por usar (y solo como ampliación) los números de oxidación en 3.º de ESO.

En el caso de los iones heteropoliatómicos, no es correcto hablar de número de oxidación, sino de número de carga. De esta manera el ion hidróxido, OH⁻, tiene una carga 1- (número de carga) y no sería correcto que a la hora de escribir las fórmulas se diga que tiene un número de oxidación -1.

La regla de la suma cero de los números de oxidación (o de carga)

Con aceptar esta sencilla regla, y que nuestros alumnos recuerden, basándose en la tabla periódica, un número limitado de números de oxidación, es posible determinar el estado de oxidación (o la carga, cuando proceda) de los elementos en un compuesto determinado, por lo que se puede prescindir de listados (tablas) con números de oxidación.

Considerando la regla de suma cero no hay por qué utilizar el método de cruzar los números de oxidación o de carga (con lo que se pretende asegurar la neutralidad del compuesto) e imponer la necesidad de simplificar la fórmula resultante, ya que este procedimiento puede resultar incorrecto en bastantes casos (p.e. N_2O_4).

Recomendaciones Enseñanza Secundaria (Información complementaria)

Grupo de trabajo Secundaria

Utilización del prefijo mono

En el Libro Rojo (p. 71) se puede leer:

"El prefijo "mono" es, hablando estrictamente, superfluo y se necesita solamente para enfatizar la estequiometria cuando se comentan sustancias relacionadas por la composición".

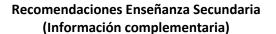
Aclarando lo anterior se indica que el NO puede ser nombrado como óxido de nitrógeno, pero también como monóxido de nitrógeno ya que hay varios óxidos de nitrógeno más (sustancias relacionadas por la composición). Siguiendo este razonamiento el CO puede nombrarse como monóxido de carbono o como óxido de carbono, el FeO como monóxido de hierro o como óxido de hierro, pero el Na₂O se nombraría como óxido de disodio, no monóxido de disodio.

No obstante esta norma, combinada con la que también aparece en la misma página 71, puede provocar algunas dudas:

"Los prefijos multiplicadores no son necesarios en los nombres binarios si no hay ambigüedad sobre la estequiometría del compuesto". (Ca_3P_2 : difosfuro de tricalcio, o fosfuro de calcio).

El fosfuro de calcio podría conducir a la fórmula CaP, considerando que el prefijo mono no se ha utilizado. Lo mismo ocurre con el óxido de aluminio (trióxido de dialuminio) o el óxido de sodio y otros (metales alcalinos, alcalino térreos, plata, cinc o aluminio) que de manera generalizada se considera que tienen un estado de oxidación "único". No obstante, esto tampoco es cierto ya que se conocen algunos óxidos distintos de los que se tratan comúnmente. Por ejemplo el AgO. En este caso el óxido se nombra como monóxido de plata.

Salvador Olivares^[2,4,5] propone para estos casos lo siguiente:


"... hay elementos para los que se deben de sobreentender determinados números de oxidación únicos cuando no hay ningún prefijo, pero si hay algún prefijo, estos mandan".

Ejemplo:

 Al_2O_3 : trióxido de dialuminio (nomenclatura preferida), óxido de aluminio (se considera que no hay ambigüedad); pero AlO: monóxido de aluminio.

La nomenclatura tradicional sigue vigente para los oxoácidos y oxosales

El matiz está en que la nomenclatura tradicional no sigue vigente, lo único que sucede es que se aceptan algunos nombres vulgares para oxoácidos y oxosales, de lo que no se debe deducir que se admiten todos los nombres anteriores. Únicamente se permiten los especificados (ver lista). De esta manera no se admiten nombres como ácido crómico o ácido permangánico.

Nomenclatura y formulación

Aunque la expresión está fuertemente arraigada (incluso aparece en el enunciado de los contenidos y criterios de formulación de la LOMCE) hay que matizar que (Libro Rojo, p. 3):

"El fin principal de la nomenclatura química es simplemente proporcionar una metodología para asignar descriptores (nombres y fórmulas) a las sustancias químicas de manera que puedan identificarse sin ambigüedad, y de este modo facilitar la comunicación"

Por tanto, a la nomenclatura le compete, tanto establecer el nombre a partir de la fórmula como escribir la fórmula a partir del nombre. Es decir, nombrar y formular, son aspectos de la nomenclatura. Debería, en consecuencia, hablarse de **nomenclatura** y no de **nomenclatura** y **formulación.**

Bibliografía

- 1. Nomenclatura de Química Inorgánica. Recomendaciones de la IUPAC de 2005. Connelly, N.G.; Damhus, T.; Hartshorn, R.M.; Hutton, A.T. Versión en castellano: Ciriano, M.A.; Román, P. Prensas Universitarias de Zaragoza, 2007. ISBN 978-84-7733-905-2. Disponible en versión abreviada en la web en inglés y castellano: bit.ly/1M76uop.
- 2. S. Olivares, *Nomenclatura de química inorgánica. Recomendaciones de la IUPAC de 2005. Una adaptación del Libro Rojo a bachillerato*, Murcia, 2011. Disponible en: bit.ly/268k7hw
- 3. J. M. Fernández Colinas. *Resumen de las normas de nomenclatura inorgánica. IUPAC 2005.* Disponible en: http://bit.ly/260aQrQ.
- 4. S. Olivares, Revista Eureka sobre Enseñanza y Divulgación de las Ciencias **2014**, 11(3), 416–425,
- 5. S. Olivares. Artículos varios sobre nomenclatura química. Disponibles en: http://bit.ly/1MjlL9x.
- 6. L. I. García. Apuntes nomenclatura Química Inorgánica adaptados a ESO y Bachillerato. Disponibles en: bit.ly/1Sph4HP.

ERRORES EN LA NOMENCLATURA DE QUÍMICA INORGÁNICA EN LOS LIBROS DE BACHILLERATO Y ESO

Salvador Olivares Campillo
IES Floridablanca
Miguel Hernández, 5
30011 Murcia
olivares.salvador@gmail.com
28 de febrero y 22 de marzo de 2016
©2016 Salvador Olivares

Enumeración de errores en la nomenclatura de química inorgánica detectados en tres de los últimos libros de texto de bachillerato, así como en dos de ESO.

En la Educación Secundaria Obligatoria (ESO) y el bachillerato se entiende que la nomenclatura química debe ser la de la IUPAC. Por esto, y dado el tiempo transcurrido, hay que considerar erróneo en la química inorgánica tanto cualquier descriptor (nombre o fórmula) que no sea de las últimas recomendaciones de la IUPAC (2005) como aquellas interpretaciones o aplicaciones de las normas actuales que no sean las correctas. Hay que advertir que no es necesario que un nombre sea siempre sistemático, porque la IUPAC acepta en su Libro Rojo^[4] un número *limitado* de nombres vulgares.

Acompañando a la nomenclatura que se da en la ESO y el bachillerato, hay algunos errores de naturaleza puramente química que quizá convendría hacer notar también.

Los tres libros de bachillerato estudiados aquí son simplemente los tres primeros que he encontrado de 2015 que incluyen nombres y fórmulas de 2005. El detalle se encuentra en los anexos. (No todos incurren en los mismos errores).

Sobre todo en el primero de ellos, por algunos de los errores, parece como si no se hubieran consultado referencias primarias (el libro Rojo de la IUPAC), sino otras secundarias no muy fiables^[7].

Los errores o defectos incluyen:

- 1. Ignorar que las recomendaciones de la nomenclatura no solo son para los nombres: también las hay para las fórmulas. En particular, de cómo obtener una fórmula a partir de un nombre también se ocupa la nomenclatura, por lo que esto no es *formulación*, sino formular. Si solo se va a pedir un nombre dada una fórmula o una fórmula dado un nombre (formular), basta con llamar nomenclatura a lo que se hace. Y es esto lo que principalmente o solamente se hace en los textos de bachillerato.
- 2. Recomendar la regla del intercambio y, como consecuencia, la de la simplificación.
- 3. Pedir que la nomenclatura se ocupe de lo que no le es propio. Confundir disoluciones (ácido clorhídrico...) con compuestos de composición definida (cloruro de hidrógeno...), es no tener claro el ámbito de aplicación de la nomenclatura.
- 4. Aplicar mal o ignorar parte de la gramática:
 - a) En «arseniuro», «antimoniuro», «seleniuro» y «teleniuro» en lugar de arsenuro, antimonuro, selenuro y telururo, se están derivando raíces equivocadas de los nombres de los elementos, igual que en «arseniato» por arsenato, e, incluso, en «iodato» en lugar de yodato.
 - b) La terminación -anio, que es la apropiada, no es la que está en «fosfonio», «arsonio» y «estibonio». De fosfano, arsano y estibano derivan fosfanio, arsanio y estibanio.
 - c) Se elide incorrectamente. En «pentóxido» se está usando un prefijo multiplicador y no se debe elidir: lo correcto es pentaóxido.
 - d) No se debe dejar espacio antes de abrir el paréntesis para los números romanos que indican el estado de oxidación (v. IR-2.8.2), como en «... de oro (III)» por ... de oro(III). Y los corchetes se olvidan a veces, como en SO₂ (OH)₂ por [S(O)₂ (OH)₂].

- e) Se da que se ignoran los principios de ordenación, tanto en fórmulas como en nombres: NaK₂PO₄ debería haberse escrito K₂NaPO₄; «trióxido de dicloro», dicloruro de trioxígeno, etcétera.
 - (La secuencia de los elementos de la TABLA VI del Libro Rojo puede no estar o aparecer incompleta. Y también es posible que se le atribuya un significado fisicoquímico que no tiene. Para la nomenclatura en ESO y bachillerato no es tan difícil dar su *recorrido* completo por la tabla, sin que para eso sea necesario relacionar todos los elementos).
- f) Se puede encontrar que se cambia el prefijo de reemplazo funcional peroxi- por el incorrecto de peroxo-.
- g) No hay por qué escribir los nombres con mayúscula inicial, y se hace. No se pone tilde en la palabra «hidrogeno» en la nomenclatura de hidrógeno, y se pone. Se usa la conjunción y cuando no se debe (esto, además, acompañado frecuentemente del ordenamiento equivocado: «yoduro y nitrito de...» en vez de «nitrito yoduro de...»).
- 5. Empezar con tablas de números de oxidación como si fueran necesarias para la nomenclatura, y no es así. Los elementos para los que se sobreentiende el estado de oxidación no son tantos y tal número se deduce entonces de la posición en la tabla. En los demás casos, ocurre algo parecido a esto (lo de ferroso ya no se usa): en FeO se calcula el II para el hierro, en monóxido de hierro no hace falta y en óxido de hierro(II) se está diciendo obviamente que es II.
 - [Lo que se podría hacer, en cambio, es enseñar a deducir, por el número del grupo al que pertenezca el elemento o porque la suma es cero, los números de oxidación implícitos, y que esto se haga solo cuando sea necesario. Un ejemplo más exigente es este: Cu(NO₃)₂, puede recibir un nombre directo con prefijos multiplicadores, pero, si no se quiere, se llega al de nitrato de cobre(II) identificando el anión NO₃⁻ como el que deriva del HNO₃, ácido este que debe conocerse (y mejor directamente) por ser de nombre vulgar aceptado —si no, no se podría encontrar la fórmula ante el nombre de nitrato de cobre(II)—. En el caso del FeCl₃ o tricloruro de hierro, se deduce que se trata de hierro(III) porque el cloro frente al metal tiene que tener un número de oxidación negativo y este solo puede ser el –I: el elemento es del grupo 17 y el 18 está a un paso a la derecha].
- 6. Presentar reglas incompletas, algunas innecesarias y otras equivocadas para calcular los números de oxidación. ¿Por qué se empieza con una regla para darle al oxígeno el número de oxidación cero en el O₃, por ejemplo, si esto se deduce de otra, más general, que, brevemente, dice que la suma es cero o la carga del ion?
 - Entre las equivocadas, en algún texto se dice que el hidrógeno siempre tiene el número de oxidación negativo, salvo con los alcalinos y los alcalino-térreos.
- 7. Omitir, confundir o mal emplear o mal expresar números de carga y números de oxidación. No es rara la confusión entre número de oxidación (que es por átomo) y número de carga: se puede encontrar que el anión sulfato «tiene el número de oxidación menos dos», que el ion hidróxido «actúa con el número de oxidación –1» o se habla del óxido de cromo(6+) cuando no parece que pueda existir ahí un catión con tanta carga y habría que haber usado el número de oxidación, no el de carga: óxido de cromo(vI). Puesto que existe más de un tetraoxidocromato de potasio, en casos similares no puede

- omitirse el número de carga del anión si se quiere evitar la ambigüedad, y esto ocurre. En el nombre «ion dimercurio» falta el número de carga...
- 8. Dar a entender que la IUPAC acepta la nomenclatura «tradicional» —se llega a decir que la recomienda «sobre todo»—, e incluso alguna otra también obsoleta, cuando solo hay un número de nombres vulgares aceptados. O atribuir a la tradicional nombres de la actual nomenclatura de sustitución (fosfano, arsano...).
- 9. No presentar la nomenclatura de los alótropos de los elementos (monohidrógeno, dihidrógeno, diyodo...). Presentar como aceptados un gran número de nombres vulgares que no lo están (ácido mangánico, ácido crómico, hidrogenoarsenito de..., manganato de...), cambiar el aceptado (aziduro en vez de azida, peroxo en lugar de peróxido...).
- 10. Definir mal (se niega que sean hidruros los de los grupos 16 y 17, en donde hay hidruros progenitores mononucleares), generalizar mal (los compuestos binarios entre no metales no son necesariamente moleculares), limitar demasiado, y otros varios.

Anexo 1

Se trata aquí del texto de la editorial Bruño [1, pp. 239-247].

En el libro no está la secuencia de los elementos de 2005 (ni ninguna otra) y esto es ya un error en sí mismo. Consecuentemente, no están los haluros de oxígeno. Incluye nomenclaturas obsoletas mezclada con la de 2005. Hay un gran número de errores de todo tipo, incluyendo modificaciones equivocadas de nombres:

monóxido de carbono, C=O, p. 239 La estructura Lewis del CO tiene un enlace triple^[8].

Tabla 1. Números de oxidación Para evitar confusiones (v. más adelante), los números arábigos es mejor reservarlos para los números de carga. En nombres y fórmulas, los de oxidación enteropositivos no se escriben 1, 2..., sino I, II..., sin signo, y los negativos, con el signo delante: –I, –II... [4, IR-5.4.2.2].

Para la nomenclatura actual es irrelevante memorizar muchos de los números de la tabla: óxido de cobre(II) ya indica el del cobre y CuO permite calcularlo con las reglas; H₂SO₄ se puede llamar ácido sulfúrico porque este nombre es uno de los vulgares aceptados en el Libro Rojo, y no porque su fórmula se derive de alguna manera del número de oxidación VI (el H₂CrO₄ se puede derivar igual y no se llama ahora ácido crómico), etcétera.

hidrógeno, H₂, p.240 Los nombres de la IUPAC de H₂, I₂... son dihidrógeno, diyodo...

- ... se simplifican La regla del intercambio y la simplificación ni es la mejor, ni es necesaria [8] ni da las fórmulas de compuestos binarios importantes (N_2O_4 , Hg_2Cl_2 ...).
- ... ferroso / Tetraoxoclorato(VII) de... Ni la nomenclatura «tradicional» ni la de Stock son de la IUPAC hoy. Y la adjetivación debería haber desaparecido ya antes de 2005.
- ... excepto con los gases nobles, p. 241 El oxígeno sí forma compuestos con gases nobles [10, pp. 900-905], y se conoce desde hace tiempo.
- $O_2^{2^-}$ ion dióxido [...] O_3^- ion trióxido Lo correcto es dióxido(2-) y trióxido(1-).
- ... valencia -1 [...] valencia +1, p. 242 Se querrá decir número de oxidación -1 y número de oxidación 1. El hidrógeno puede tener la valencia 1. Las valencias son enteros positivos [10]. (Curiosamente, en la p. 239 se advierte de que «el número de oxidación a menudo se confunde con la valencia»).

compuestos conocidos como hidrácidos, p. 243 Ácido sulfhídrico no es el nombre de un compuesto, sino de una disolución acuosa de un compuesto. Es la disolución, que no tiene composición definida, la que recibe tal nombre (IR-8.1). Un nombre del compuesto H_2S puede ser el de sulfuro de hidrógeno, que está aceptado, pero es mejor el de sulfuro de dihidrógeno (nota e de la TABLA IR-6.1). Lo mismo vale para selenhídrico, etcétera.

Seleniuro de... Lo correcto es selenuro de... [4, TABLA IX].

Teleniuro de... De teluro (telurio también para la Real Academia Española o RAE) deriva telururo, nunca «teleniuro».

... conocido como salfumán En el pie de la figura se lee: «Disolución acuosa de cloruro de hidrógeno, conocido comúnmente como salfumán». Debería decir «conocida», porque es la disolución la que se puede llamar salfumán, no el compuesto HCl.

Por cierto, que la RAE tampoco ha corregido este error en su último *Diccionario de la lengua española* (DLE, accesible por internet); para la entrada de **salfumán** da:

1. m. Disolución de ácido clorhídrico en agua.

Y se le podría sugerir¹ a la RAE sustituir la entrada por esta otra:

salfumán

1. m. Disolución de cloruro de hidrógeno en agua.

Porque lo que se está diciendo ahora mismo en el *Diccionario* es que el salfumán es una disolución de disolución de...

(El compuesto que se disuelve es el cloruro de hidrógeno: el ácido clorhídrico no es un compuesto).

En la sistemática: Prefijo-oxo+... La receta «En la sistemática: Prefijo-oxo+raíz del nombre del elemento (-ato)+ valencia en números romanos + de hidrógeno» contiene errores varios.

En ninguna de las nomenclaturas fundamentales de 2005 (las tres son sistemáticas) se dice que los oxoácidos se nombren así. Tampoco los oxoácidos responden en general (TABLA IR-8.1) a la fórmula $H_2X_aO_{b+1}$. Y en números romanos se indican los números de oxidación, no las valencias.

Dioxodinitrato (I) de hidrógeno Todos los nombres como este, de los que hay seis más en la página, están mal hoy.

ácido hipodinitroso En la nota f de la TABLA IR-8.1 se advierte sobre este nombre.

H₃PO₂ (ácido fosfonoso) El ácido fosfonoso es el H₂PHO₂ (TABLA IR-8.1).

 $HP(OH)_2$ Ácido fosfonoso Lo correcto es H_2PHO_2 o bien $[P(H)(OH)_2]$ (TABLA IR-8.1).

H₄P₂O₅ Ácido difosfónico Lo correcto es H₂P₂H₂O₅ ácido difosfónico (TABLA IR-8.1).

H₃PO Ácido fosfinoso Lo correcto es HPH₂O (TABLA IR-8.1).

 $H_2PO(OH)$ Ácido fosfínico Lo correcto es HPH_2O_2 o $[P(H)_2 (O)(OH)]$ ácido fosfínico (TABLA IR-8.1 y TABLA 8 de la *Guía Breve* de 2015).

HPO₃, ácido metafosfórico: catena-(hidroxidooxidofósforo-μ-óxido) Con este ejemplo y otro el autor de Bruño² pretende mostrar que los nombres «tradicionales» son preferibles. Los errores son tres:

- 1. La fórmula es $(HPO_3)_n$.
- 2. El nombre de ácido metafosfórico no es sistemático, pero también es de la IUPAC de hoy porque es uno de los nombres aceptados.
- 3. El segundo nombre no es equivalente al primero. El segundo, además de sistemático, proporciona información que no da el primero: describe la estructura $(P(O)(OH)O)_n$ –. Es, pues, razonable que deba ser un nombre más largo.

Dioxoclorato (I) de hidrógeno, p. 245 Hay 18 nombres obsoletos más como este. (Además, mal escritos dejando un espacio que no debería estar).

H₂SO₂ (ácido hiposulfuroso) Este nombre no está entre los vulgares aceptados (TABLA IR-8.1).

H₂MnO₃, ácido manganoso No está aceptado el nombre (v. TABLA IX del Libro Rojo).

¹ Lo he hecho el 23 de febrero de 2016 a través de la Unidad Interactiva del *Diccionario* (UNIDRAE).

² Obsérvese la influencia del Peterson (v. la referencia [7]).

ácido mangánico Este no es un nombre vulgar aceptado (v. TABLA IX).

acido permangánico Nombre no aceptado [4, p. 136] (v. TABLA IX).

H₂CrO₃ ácido cromoso Nombre no aceptado (v. TABLA IX).

ácido dicrómico Nombre no aceptado [4, p. 136] (v. TABLA IX).

Ácido peroxonítrico Lo correcto es peroxinítrico (v. TABLA IR-8.2).

Ácido peroxosulfúrico El nombre correcto es peroxisulfúrico (v. TABLA IR-8.2).

nitrosilo, fosfonio, hiperóxido, aziduro..., p. 246 En esta página se da una tabla con 16 nombres (y las fórmulas) de los que solo cinco no son erróneos. De algunos se advierte expresamente en el Libro Rojo: NO^+ «no es nitrosilo» (p. 316 de la TABLA IX), O_2^- es superóxido y «no es hiperóxido» (p. 321 de la TABLA IX), N_3^- es azida y no aziduro (v. la nota en la p. 75 del Libro Rojo). Otros deben construirse de otro modo: amonio se acepta, pero no fosfonio porque de fosfano deriva fosfanio; y lo mismo para arsonio o estibonio que son arsanio y estibanio (TABLA IX). Imiduro y amiduro deben reemplazarse por imida y amida, respectivamente...

Sulfato de sodio y potasio / Cloruro y carbonato de... La ordenación alfabética hace que el nombre correcto sea sulfato de potasio y sodio:

El orden de citación es el alfabético dentro de cada clase de constituyentes (IR-5.4.1).

Por lo mismo, el nombre «cloruro y carbonato de aluminio» debería haber sido carbonato cloruro de aluminio (y sin la conjunción).

Hidroxisulfato de... / Oxifluoruro de... Lo correcto es hidróxido sulfato de alumnio, fluoruro óxido de bario. Y en una de las fórmulas tampoco se ha aplicado la ordenación alfabética.

ácido dicrómico No está aceptado. Un nombre alternativo es el de: dihidrogeno (tetraoxidocromato), de la nomenclatura de hidrógeno (IR-8.4).

trióxido de dicloro, p. 247 Por la secuencia de los elementos, es dicloruro de trioxígeno.

... de oro (III) No se deja espacio y lo correcto es perclorato de oro(III). Este error está en todo el texto y no solo en esta página.

Actividades Se repiten errores (aziduro de..., NH₄BaPO₄ está mal formulado y ordenado...) y aparecen otros como cuando se pide que se formule el «antimoniato de rubidio» (hay dos errores: antimoniato como SbO₄³⁻ no está aceptado y de «antimonio» se derivaría «antimonato» —v. la TABLA x del Libro Rojo) o el trióxido de dicloro (debía ser dicloruro de trioxígeno por la —ausente— secuencia de los elementos de la TABLA VI del Libro Rojo).

La relación completa y detallada está más abajo en las TABLAS 1–4.

Tabla 1. Errores en las actividades

Erróneo	Correcto
trióxido de dicloro	dicloruro de trioxígeno
óxido de oro (I)	óxido de oro(ι)
óxido de oro (III)	óxido de oro(III)
óxido de níquel (III)	óxido de níquel(III)
Cl ₂ O ₃	O_3Cl_2
I_2O_5	O_5I_2
seleniuro de hidrógeno	selenuro de hidrógeno
hidruro de paladio (II)	hidruro de paladio(II)
hidruro de níquel (III)	hidruro de níquel(III)
hidruro de paladio (II)	hidruro de paladio(॥)
hidruro de cromo (III)	hidruro de cromo(III)
hidróxido de plomo (II)	hidróxido de plomo(II)
hidróxido de cobre (II)	hidróxido de cobre(II)
hidróxido de níquel (II)	hidróxido de níquel(II)
hidróxido de plomo (IV)	hidróxido de plomo(۱۷)
hidróxido de oro (III)	hidróxido de oro(III)
hidróxido de platino (II)	hidróxido de platino(II)
cloruro de mercurio (II)	cloruro de mercurio(II)
sulfuro de oro (III)	sulfuro de oro(III)
seleniuro de hierro (III)	selenuro de hierro(iii)
clorato de plomo (II)	clorato de plomo(II)
peryodato de hierro (III)	peryodato de hierro(III)
NH ₄ BaPO ₄	Ba(NH ₄)PO ₄ o BaNH ₄ PO ₄

Tabla 2. Errores en las actividades (cont.)

Erróneo	Correcto
$NH_4K(CO_3)_2$	K(NH ₄)(CO ₃) ₂ o KNH ₄ (CO ₃) ₂
PbBaSiO ₄	BaPbSiO ₄
AlCO₃Br	AlBrCO ₃
BelCl	BeClI
BaClBr	BaBrCl
CuNO ₃ NO ₂	CuNO ₂ NO ₃
(NH ₄) ₃ CO ₃ Cl	(NH ₄) ₃ CICO ₃
NaKB ₄ O ₇	KNaB ₄ O ₇
carbonato de cobre (I) y amonio	carbonato de amonio y cobre(ı)
fluoruro y carbonato de aluminio	carbonato fluoruro de aluminio
yoduro y nitrito de calcio	nitrito yoduro de calcio
cloruro y bromuro de estroncio	bromuro cloruro de estroncio
yoduro y sulfuro de aluminio	sulfuro yoduro de aluminio

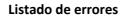


Tabla 3. Errores en las actividades (cont.)

Erróneo	Correcto
cloruro y bromuro de calcio	bromuro cloruro de calcio
hidrogenoselenito ^(*) de potasio	hidrogeno(selenito) de potasio o hidrogeno(trioxidoselenato)(2-) de potasio
hidrogenosulfuro de berilio	hidrogeno(sulfuro)(1-) de berilio o sulfanuro de berilio
hidroxisulfito de aluminio	hidróxido sulfito de aluminio
dihidroxisulfato de calcio	dihidróxido sulfato de calcio
dihidroxifluoruro de aluminio	fluoruro dihidróxido de aluminio
dihidroxicarbonato de plomo (IV)	carbonato dihidróxido de plomo(ıv)
trihidroxiyoduro de dicobre	trihidróxido yoduro de dicobre
FeSO ₃ (OH)	Fe(OH)SO ₃
Ra ₂ Se(OH) ₂	Ra ₂ (OH) ₂ Se
carbonato de plomo (IV)	carbonato de plomo(ıv)
óxido de oro (III)	óxido de oro(III)
antimoniato de rubidio	tetraoxidoantimonato(3–) de rubidio (TABLA X del Libro Rojo)
heptaoxotetraborato (III) de calcio	heptaoxidotetraborato(2-) de calcio
aziduro de plomo (II)	azida de plomo(II)

^(*) El nombre de selenito está aceptado, pero el de hidrogenoselenito no aparece en la relación de nombres de hidrógeno abreviados IR-8.5 ni en otras del Libro Rojo.

Tabla 4. Errores en las actividades (cont.)

Erróneo	Correcto
tiosulfato de bario e hidrógeno	hidrogeno(tiosulfato)(1-) de bario
NaK ₂ PO ₄	K₂NaPO₄
óxido de plomo (IV)	óxido de plomo(ıv)
hidróxido de níquel (II)	hidróxido de níquel(II)
hidroxihipoclorito de estaño (II)	hidróxido hipoclorito de estaño(II)
sulfuro de sodio y potasio	sulfuro de potasio y sodio
hidróxido de plomo (IV)	hidróxido de plomo(IV)
sulfuro de cromo (III)	sulfuro de cromo(III)
dihidrogenofosfato de cobre (II)	dihidrogenofosfato de cobre(II)
oxicloruro de aluminio	cloruro óxido de aluminio
aziduro de estroncio	azida de estroncio
arseniato ^(*) de amonio	arsenato de amonio

^(*) El nombre vulgar aceptado para el anión AsO₄³⁻ es el de arsenato (v. TABLA IX). Además (v. TABLA X), el nombre modificado del elemento arsénico para aniones heteropoliatómicos que lo tienen como átomo central es el de arsenato —como de azufre se deriva sulfato para la nomenclatura de adición—.

Anexo 2

Este anexo se ocupa del libro de McGraw-Hill de 2015 [2, pp. 322-334].

Se modifican mal nombres de elementos (arseniuro o arseniato en vez de arsenuro y arsenato...), se escribe mayúscula inicial cuando es minúscula, se confunden números de oxidación y números de carga, etcétera:

si los pares electrónicos, p. 323 Para el número de oxidación no se asignan los pares electrónicos (todos) a los átomos más electronegativos, sino solo los pares de los enlaces.

números de oxidación más frecuentes, p. 324 Luego no son necesarios en su mayor parte. Los que se necesitan se deducen de la tabla periódica...

simplificándose ambos subíndices La regla del intercambio y la simplificación no es necesaria ni lo mejor^[8].

y/o, p. 325 En español no se necesita el *y/o*, calco del *and/or* inglés, porque la conjunción *o* puede expresar, en español, tanto la suma de dos como la alternativa entre dos.

se deben suprimir los prefijos Lo correcto es *se pueden* (v. el siguiente).

no, Óxido de disodio Es cierto que óxido de sodio es un nombre correcto (y el más simple), pero esto no significa que no lo sea óxido de disodio. El primero es correcto porque se están usando las cargas, implícitas en los nombres óxido y (ion) sodio (2– y 1+, respectivamente), para determinar las proporciones (-2+1+1=0). Pero el segundo también, solo que se está haciendo uso de los prefijos multiplicadores para lo mismo.

Lo que no debe escribirse es «monóxido de disodio» porque el di- en óxido de disodio ya indica suficientemente que se recurre a los prefijos y el mono- es aquí superfluo, como lo es el número uno en a+b+b=1a+2b? Lo natural es a+b+b=a+2b.

Además, la mayúscula inicial no es correcta.

es válido poner el número de oxidación con números arábigos y el signo Se está confundiendo el número de oxidación con el número de carga, que no es lo mismo (IR-5.4.2.2). El número de oxidación muchas veces es solo formal (la carga que habría si...) y se obtiene con reglas simplificadoras. El número de carga es la carga iónica (IR-5.4.2.2).

En óxido de hierro(III) se está indicando explícitamente el número de oxidación del hierro e implícitamente el del oxígeno; en óxido de hierro(3+), el explícito es el número de carga del ion Fe³⁺.

En «óxido de cromo(vI)» se dice correctamente que el número de oxidación del cromo en el CrO₃ es el vI. En óxido de cromo(6+) no se está usando bien el número de carga porque el cromo no está en el compuesto CrO₃ como un ion con seis cargas positivas elementales (no hay ahí un ion monoatómico con una carga tan elevada).

antimoniuro, arseniuro, seleniuro Estas modificaciones están mal: las correctas (TABLA IX) son antimonuro, arsenuro, selenuro.

Sulfuro de hidrógeno, p. 326 Es correcto, pero el sistemático es sulfuro de dihidrógeno.

Ácido sulfhídrico... Primero se dice, correctamente, que son las disoluciones acuosas las que reciben tales nombres, e incluso se escribe H₂S(ac) y no H₂S, etcétera.

Pero en la actividad 3 se pide «formula los siguientes compuestos» y en la relación aparecen ácido sulfhídrico, ácido clorhídrico... como nombres de compuestos binarios, y no lo son (son disoluciones).

Monosulfuro de hierro, p. 327 Los nombres no se escriben con mayúscula inicial, como ya se ha dicho. Como el prefijo mono- es superfluo (IR-5.2), en este caso también bastaría con «sulfuro de hierro», como en el ejemplo 2 de la IR-5.2, donde a NO se le llama óxido de nitrógeno y después monóxido de nitrógeno. Puesto que el hierro, como el nitrógeno, no es de los elementos a los que se les deba suponer un determinado estado de oxidación si no se explicita ninguno en su nombre, es que en «sulfuro de hierro» se están dando las proporciones, no con números de oxidación implícitos, sino con «prefijos», solo que los mono- no se han escrito por superfluos.

Obsérvese en este y en otros ejemplos que lo que se debe saber es solo que el metal es uno de los que puede presentarse con diferentes estados de oxidación, no que los números de oxidación más frecuentes sean estos o aquellos.

F CI Br I O... En vez de dar la secuencia de los elementos de la TABLA VI del Libro Rojo (es suficiente con enseñar cómo se dibuja la línea con flecha en la tabla periódica, sin necesidad de enumerar elementos), se da una lista concreta de 15. El problema es que no refleja el criterio de ordenación de la IUPAC por carecer de puntos suspensivos para los elementos que se omiten en medio.

grupo peroxo, de fórmula... Se da la fórmula

-0-0-,

para la que el nombre aceptado es peroxi (TABLA IX), y no «peroxo». Y el anión O_2^{2-} tiene el nombre vulgar peróxido.

Peróxido de potasio / Peróxido de bario Se dan fórmulas para estos dos peróxidos como si fuesen compuestos moleculares (K-O-O-K), incluso con un ciclo de tres para el segundo.

Seleniuro de... / Pentaseleniuro de... Debían haber sido selenuro de..., pentaselenuro de...

anión hidroxilo OH⁻, p. 328 El nombre vulgar aceptado de tal anión es el de hidróxido. Hidroxilo es el nombre del radical HO[•], y no el del ion.

OH⁻, que actúa con número de oxidación –1 El número de oxidación es un número por átomo. Se está confundiendo otra vez carga y número de oxidación. La carga de la especie OH⁻ es 1–, con dos átomos que tienen los números de oxidación –II y I.

La IUPAC recomienda sobre todo la nomenclatura tradicional La IUPAC no la recomienda, y menos aún sobre todo. Tan solo relaciona en varias partes del Libro Rojo qué nombres vulgares acepta, lo que es muy diferente.

Si se aplican las reglas que se dan en el texto resultan muchos nombres no aceptados.

ácido cianhídrico Este nombre no está aceptado para el compuesto de fórmula HCN; podría ser el de la disolución acuosa. Un nombre es cianuro de hidrógeno (IR-8.4 y TABLA IX).

ácido mangánico Ni ácido magánico, ni crómico ni permangánico son nombres vulgares aceptados (IR-8.4), pues no se recogen como tales en parte alguna del Libro Rojo.

... $SO_2(OH)_2$ Es mejor con corchetes: $[S(O)_2 (OH)_2]$, $[CI(O)_2(OH)]$... En la IR-4.4.3.2 se dice que «la entidad de coordinación completa, lleve o no carga, puede encerrarse entre corchetes», y que estos han de usarse siempre que el átomo central sea un metal de transición. Ejemplos sin

ellos y con ellos para la misma especie los hay, como en el ácido silícico, H_4SiO_4 , que estructuralmente es $Si(OH)_4$ (nomenclatura de sustitución, silanotetrol; ejemplo 1 en la IR-7.2) o $[Si(OH)_4]$ (nomenclatura de adición, tetrahidroxidosilicio; un oxoácido en la TABLA IR-8.1).

nomenclatura del nombre de hidrógeno, p. 330 El nombre de esta nomenclatura es simplemente *nomenclatura de hidrógeno*.

Hidrógeno(oxidoclorato)..., p. 330 No hay tilde en «hidrogeno» en estos nombres (ni mayúscula inicial): hidrogeno(oxidoclorato), dihidrogeno(tetraoxidosulfato), y así los 11 restantes de la página.

HNO / Ác. hiponitroso Ni es así la fórmula ni se acepta tal nombre (nota f de la p. 132 del Libro Rojo).

ácido dicrómico, p. 331 El nombre vulgar ácido dicrómico no está aceptado (sí el de ácido disulfúrico: TABLA IR-8.1).

o pirofosfórico Se acepta ácido difosfórico, pero no pirofosfórico.

... hiposulfuroso... No se aceptan ni hiposulfuroso, ni permangánico, ni crómico, ni dicrómico, ni pirofosforoso, ni mangánico, y ácido cinahídrico no nombra una sustancia de composición definida.

«grupo» que posee un número de oxidación, p.332 . Se confunde de nuevo carga y número de oxidación. El anión sulfato tiene dos cargas negativas, no el número de oxidación menos dos.

Arseniato de..., p. 333 Lo correcto es arsenato de...

lodato de... Yodato de... El nombre del elemento aprobado por la IUPAC es yodo (IR-3.1 Tabla I).

Manganato de rubidio Este nombre es incorrecto. Hay más de un manganato (entrada MnO_4 de la TABLA IX) y falta precisar cuál es: ¿ $MnO_4^{2^-}$ o $MnO_4^{3^-}$? Interpretar que se dan las proporciones con prefijos mono- omitidos llevaría a $RbMnO_4$ que no contiene ni manganato(VI) ni manganato(V), sino permanganato MnO_4^- . El nombre vulgar manganato debe ir acompañado del paréntesis con un número romano.

Pirofosfato de... Incorrecto.

la valencia se indica con números romanos, p. 334. En los nombres no se indica la valencia. Se pueden indicar, con ciertas limitaciones, números de oxidación o números carga, los primeros con números romanos (precedidos del signo si son negativos) y los segundos, con arábigos (seguidos de un signo positivo o negativo).

Hidrogenoarsenito de... Este nombre de anión no está entre los aceptados.

...(tetraoxidoarseniato)] de... Es tetraoxidoarsenato.

Anexo 3

En este anexo se recoge el detalle del libro de la editorial SM de 2015 para 1.º de bachillerato [3, pp. 192-201].

Como casi todos, empieza con una regla innecesaria para el cálculo del número de oxidación (la primera se deduce de la última), y la del hidrógeno no es correcta (también es –ı con otros metales)...

en la formulación [...] indicar [...] oxidación, p. 192 La «opción muy empleada en la formulación de compuestos binarios» de «indicar en números romanos el número de oxidación de uno de los elementos del compuesto» estaría mejor con dos cambios: se emplea en la nomenclatura —nombres y fórmulas— (IR-1.3) y puede indicarse más de un número (IR-5.4.2.2). Ejemplos son óxido de hierro(II) y dihierro(III), Pb₂IIPbIVO⁴ (IR-4.6.1). Y, aunque este no es binario, es un ejemplo en el que se dan dos y de elementos diferentes: hexacianuroferrato(II) de cobalto(III).

Los números de oxidación explícitos e implícitos son los que pueden determinar las proporciones de los elementos en los compuestos, los binarios entre ellos, claro. No es suficiente con uno. En óxido de nitrógeno(I), por ejemplo, el -II del oxígeno está implícito en «óxido» y entonces de -2+1+1=0 se deduce la fórmula de composición N_2O , lo mismo que de -2+2=0 se deduce CO del nombre óxido de carbono(II).

Obsérvese en los ejemplos que he dado que no se necesita la regla del intercambio y, en consecuencia, tampoco la de la simplificación en el CO. Además, los números de oxidación pueden no ser suficientemente determinantes: son «óxido de nitrógeno(IV)» tanto el dióxido de nitrógeno como el tetraóxido de dinitrógeno, y ambos son óxidos reales y bien diferentes. El segundo sirve también para preguntarse por la validez de la respuesta habitual de que se simplifica excepto con los peróxidos... (en las tablas del final hay muchos ejemplos de subíndices pares sin que se trate de peróxidos).

orden de electronegatividades según el convenio Sería nejor decir simplemente que es una secuencia de los elementos o incluir un adjetivo: orden de electronegatividades **formales**. Se evitarían incomprensiones.

Reglas... / el número de oxidación del hidrógeno En la regla para el hidrógeno se lee que es «siempre +1, salvo en sus combinaciones con alcalinos y alcalino-térreos». En la IR-5.4.2.2:

El hidrógeno se considera positivo (número de oxidación I) cuando está combinado con elementos no metálicos, y negativo (número de oxidación –I) cuando está combinado con elementos metálicos.

Es decir, que no solo es positivo con los metales alcalinos y alcalino-térreos.

Por cierto, que debería hacerse notar que una de las reglas que siempre se dan, y en primer lugar, es la que lleva directamente a que el número de oxidación de los átomos en los alótropos de los elementos es cero. Sin embargo, es totalmente innecesaria pues se deduce inmediatamente de otra más general: la suma de los números es cero o la carga del ion. Son así cero, sin la primera regla, los números para argón, mononitrógeno³ y dinitrógeno: $x+x=0 \rightarrow x=0$ para cada átomo en la molécula N_2 .

³ El prefijo no se puede usar para el argón porque «se usa únicamente cuando el elemento no se presenta en la naturaleza en estado monoatómico» (IR-3.4.3).

Por lo mismo, es innecesaria la regla «el número de oxidación de cualquier ion monoatómico es igual a la carga del ion»: del mismo modo que se deduce que el oxígeno tiene el -1 en el O_2^{2-} $(x+x=-2 \rightarrow x=-1)$, se deduce que es 111 para el cromo en el Cr^{3+} .

Se echan en falta en el texto otras reglas, máxime cuando se relacionan muy fácilmente con la tabla periódica: para el grupo 17 el único negativo posible es el –I (el 18 está a un paso hacia la derecha), por ejemplo.

Tabla de estados de oxidación No se necesitan muchos de los de la tabla en la nomenclatura porque se dan con los nombres o se deducen con las fórmulas. Que el número de oxidación máximo es el de las unidades del número del grupo y los casos en los que solo es uno, es, quizá, lo único que habría que enseñar al estudiar la nomenclatura. (Otra cosa es al estudiar la química descriptiva).

Óxidos metálicos. [...] iónico [...] óxidos básicos, p. 193 Se dice que son iónicos. Se dice que a los óxidos metálicos se les denomina óxidos básicos...

Pero no todos los óxidos metálicos tienen carácter iónico y no todos tienen en disolución acuosa un comportamiento básico. Para lo primero, habría que añadir que suele darse si los números de oxidación son bajos. Para lo segundo, recuérdense óxidos como el de vanadio(v): aunque el V_2O_5 es poco soluble, «sus suspensiones acuosas tienen [...] marcada reacción ácida» [9, p. 652].

Hay que decir, no obstante, que en la p. 197 se advierte de esto.

se intercambian los números Antes ya he dicho que la regla del intercambio y la posterior simplificación no es recomendable.

nomenclatura de composición en sus dos variantes Los prefijos y los números de oxidación son dos de los tres *recursos* (que no variantes) de la nomenclatura de composición. También está el de los números de carga. No siempre se pueden usar todos.

el grupo peroxo (O2²⁻) Un nombre correcto es peróxido, no «peroxo».

sin simplificar Seguir la regla del intercambio no es bueno, ni siquiera advirtiendo de excepciones a la hora de simplificar. ¿Qué ocurre con el CrO₄? [6, p. 9]:

 CrO_4 no puede ser tetraoxidocromo, pues el número de oxidación del cromo tendría que ser de +8, y el elemento está en el grupo 6 de la tabla periódica (tiene +6 como mucho). Visto correctamente como $[Cr(O_2)_2]$ su nombre de adición podría ser diperoxidocromo (v. TABLA IX del Libro Rojo).

Si, en este caso, se hiciera caso de la receta del libro

Se formulan considerando en bloque el O_2 con número de oxidación -2 y se intercambian los números de oxidación sin simplificar.

se obtendría la fórmula $Cr_2(O_2)_4$ o Cr_2O_8 . Además, a pesar de lo que dice, en el ejemplo del CuO_2 que se da en la misma página no se ha seguido la receta (que habría llevado a Cu_2O_4). Ya he dicho antes que no es recomendable intercambiar.

Además, se vuelven aquí a entender mal los números de carga y los de oxidación: en el ion peróxido la carga es 2–, el número de oxidación no se aplica al ion, sino a cada átomo de oxígeno y es de –ı.

que no sea de los grupos 16 y 17, p. 194 Decir que los hidruros son «combinaciones binarias con otro elemento que no sea de los grupos 16 y 17» no es correcto. La TABLA IR-6.1 (del Libro

Rojo) es, precisamente la de «Nombres progenitores de los **hidruros** mononucleares», y en ella están los de los grupos 16 y 17.

hidruros no metálicos [...] tradicional Se confunde la nomenclatura de sustitución, una de las tres sistemáticas principales, con la «tradicional» (que no es hoy de la IUPAC). Los nombres borano, metano, silano... que se dan son de la de sustitución, no de la tradicional; amoniaco y agua son nombres vulgares aceptados.

haluros de hidrógeno [...] grupos 16 y 17 Los haluros de hidrógeno son solo con los del grupo 17.

nombre en disolución acuosa Los nombres de los compuestos HCl y H₂S, incluso en disolución acuosa, no pueden ser los de ácido clorhídrico y ácido sulfhídrico. Estos dos últimos nombres son de las propias disoluciones (mezcla de agua, los compuestos, las especies que resultan de la disociación...). En las actividades se dan dos nombres (ácido bromhídrico y ácido selenhídrico) que no son de la nomenclatura de sustancias químicas (sustancias de composición definida; v. IR-8.1).

binarios moleculares, p. 195 No necesariamente las combinaciones binarias entre no metales son sustancias moleculares: SiC, por ejemplo, da cristales covalentes [11, p. 1123].

hidróxido, al que se asigna el número de oxidación -1 El ion hidróxido tiene la carga 1-, no tiene sentido hablar de número de oxidación (que es por átomo) para él.

Se utilizan las nomenclaturas tradicional y..., **p. 196** Para los oxoácidos no se utiliza la «tradicional». Lo que ocurre es que se acepta un número limitado de nombres vulgares en general, entre los que hay nombres de la llamada nomenclatura tradicional. Pero no se aceptan sus métodos, es decir, que se genere un descriptor (nombre o fórmula) con tal sistema no garantiza en absoluto que el descriptor sea uno de los aceptados.

carbonoso El nombre de ácido carbonoso para la sustancia de fórmula H₂CO₂ no está aceptado, es decir, no está en el Libro Rojo como tal ni se obtiene sistemáticamente.

tradicional (aceptada por la IUPAC), p. 197 No es cierto que nombres como los de ácido permangánico, ácido dicrómico, etcétera, sean de una nomenclatura aceptada por la IUPAC, como se dice en la segunda columna de la tabla. Por el contrario, en la IR-8.4 del Libro Rojo se advierte de lo siguiente:

Los nombres del tipo ácido permangánico, ácido dicrómico, etc., no se encuentran en las recomendaciones actuales.

La nomenclatura de hidrógeno nombra tales compuestos con facilidad.

los peroxoácidos El prefijo del reemplazo funcional $-O \rightarrow -O - O - O$ es peroxi- (v. la nota a de la TABLA IR-8.2). El HNO₄ se puede llamar ácido peroxinítrico, no «peroxonítrico».

mangánico... Los nombres ácido mangánico, ácido permangánico, ácido molíbdico, ácido wolfrámico, ácido crómico y ácido rénico no están, como se ha dicho, en las recomendaciones actuales de la IUPAC.

mediante la nomenclatura de composición, p. 198 Los nombres cobre(2+), sulfuro(2-) o sulfuro, etcétera, igual que las correspondientes fórmulas, de los iones monoatómicos son generales, no solo de la nomenclatura de composición. El título del IR-5 es *Nomenclatura de composición y visión general de los nombres de iones y radicales*.

Poseen nombres tradicionales No todos los cationes poliatómicos poseen nombres vulgares aceptados.

 Hg_2^{2+} / Ion dimercurio Lo correcto es Hg_2^{2+} / ion dimercurio(2+). Ion dimercurio no es ningún nombre vulgar aceptado (ni es el de la «tradicional», que es ion mercurioso).

tradicional (aceptada) La nomenclatura tradicional no está aceptada, los ocho nombres de oxoaniones de la segunda columna (hipobromito, bromito..., dicromato), casualmente, sí (v. la TABLA IR-8.1 y la TABLA IX).

Nomenclatura de composición / Dioxidonitrato(1–)... Los nombres como el de dioxidonitrato(1–) y otros no son de la nomenclatura de composición, sino de la de adición (v. TABLA IR-8.1).

nomenclatura de composición, p. 199 Además de los prefijos multiplicadores, los nombres de la nomenclatura de composición pueden utilizar otros dos recursos: números de oxidación y números de carga.

Tetraoxidoclorato de potasio... En dos de las siete sales de la primera tabla de la p. 199, los nombres no llevan ningún prefijo multiplicador explícito para los iones; esto ocurre con el tetraoxidoclorato de potasio y con el trioxidoclorato de cobre.

Para ver más claramente la ambigüedad a la que se puede dar lugar no indicando en estos tres casos la carga aniónica, voy a dar tres ejemplos con los aniones CrO_4^{2-} , CrO_4^{3-} y CrO_4^{4-} , que no están en el libro analizado, pero sí en el Libro Rojo (p. 297, TABLA IX). Como se ve en el CUADRO ¡Error! No se encuentra el origen de la referencia., si se quitaran los números de carga de los nombres las tres sales tendrían el mismo nombre de tetraoxidocromato de potasio, y entonces, la interpretación que se hace en el libro de texto (prefijos mono- superfluos) da lugar a tres fórmulas equivocadas de tres, porque conduce a una sola fórmula: KCrO₄.

En el caso del nombre vulgar aceptado no se puede dar este problema con la carga porque la carga 2– va implícita en el nombre cromato (como la 1+ en el de ion potasio), pero no es así en los tres nombres sistemáticos tetraoxidocromato.

Debe, pues, en casos como estos^[7], evitarse la ambigüedad indicando (explícitamente) las cargas. Es posible que no haya más que un ion tetroxidoclorato, y no al menos tres como con el caso del cromo, pero ¿cómo saberlo? O, mejor, ¿por qué hay que saberlo en la nomenclatura? Por cierto, que en la TABLA IX sí hay más de un tetraoxidosulfato y más de un trioxidosulfato (v. a continuación).

Tabla 5. Tres tetraoxidocromatos distintos

K ₂ CrO ₄	tetraoxidocromato(2-) de potasio, tetraoxidocromato de
	dipotasio; cromato de potasio
K ₃ CrO ₄	tetraoxidocromato(3-) de potasio, tetraoxidocromato de
	tripotasio; no hay nombre vulgar
V C*O	tetraoxidocromato(4-) de potasio, tetraoxidocromato de
K ₄ CrO ₄	tetrapotasio; no hay nombre vulgar

Por tanto, nombres correctos completos sin prefijos multiplicadores son tetraoxidoclorato(1–) de potasio y trioxidoclorato(1–) de cobre(1+). Obsérvese que la del cobre es también necesaria, ya que el nombre «ion cobre» no lleva implícito una carga concreta.

hidrogeno(trioxidocarbonato) de sodio... Por lo dicho antes para los tetraoxidocromatos, deberían indicarse las cargas necesarias cuando, en casos como estos, no hay prefijos multiplicadores explícitos:

hidrogeno(trioxidocarbonato)(1-) de sodio, hidrogeno(tetraoxidosulfato)(1-) de potasio.

En la TABLA IX hay, efectivamente, más de un trioxidocarbonato, pero esto no importa. Es un error pensar que el nombre trioxidocarbonato es necesariamente equivalente al de carbonato.

c) Hidrogenosilicato de magnesio El nombre de ácido silícico está aceptado para H_4SiO_4 . Y también el de ion silicato para el SiO_4^{4-} . Pero el nombre de hidrogenosilicato no está en la lista de la sección IR-8.5 del Libro Rojo, donde, además, se dice:

Se recomienda encarecidamente que se considere esta lista como limitante.

Por tanto, en el ejercicio debería haberse pedido la fórmula con otro nombre, como el de hidrogeno(tetraoxidosilicato)(3–) de magnesio, por ejemplo.

pp. 200-201 Recojo los errores en la Tabla 6.

Tabla 6. Errores en los ejercicios.

Erróneo	Correcto
ácido telurhídrico	telururo de dihidrógeno
hidruro de dimercurio	hidruro de dimercurio(2+), el error se comete en la p. 198
pentóxido de dicloro	pentaóxido de dicloro, no debe haber elisión de la <i>a</i> (IR-2.7).
ácido clorhídrico	cloruro de hidrógeno
ácido yodhídrico	yoduro de hidrógeno
ácido permangánico (no aceptado)	hidrogeno(tetraoxidomanganato)
ácido crómico (no aceptado)	dihidrogeno(tetraoxidocromato)
hiposulfito de (no aceptado)	tiosulfato de (el tiosulfato de sodio tenía el viejo nombre
	de <i>hiposulfito sódico</i> en fotografía [12, p. 356]).
trioxidocarbonato de calcio	trioxidocarbonato(2–) de calcio
dioxidonitrato de sodio	dioxidonitrato(1-) de sodio
seleniato de plata	selenato de plata
hidrogenoselenuro de cinc	selanuro de cinc o hidrogeno(selenuro)(1-) de cinc
arseniuro de	arsenuro de

Anexo 4

Enumeración de los errores en la nomenclatura de química inorgánica del libro de 3.º de ESO de la editorial Oxford, de 2015 (ISBN: 978-84-673-9831-1 / Volumen: *La materia y sus cambios* / pp. 142-149).

Con respecto al Libro Rojo^[4], hay una excesiva e innecesaria separación en familias (hidruros metálicos, hidróxidos, etcétera) desde el principio. Sería mejor introducir antes mínimamente algunas normas generales y después aplicarlas a ejemplos que bien podrían entonces agruparse en familias.

Algunos errores se repiten después de la primera vez, pero ya no los cito.

En la LOMCE (al menos en Murcia), en este curso solo se exige hasta los compuestos binarios.

Formulación, p. 142 Todos los ejercicios del texto, con una excepción, consisten en que se da una fórmula y se pide un nombre o se da un nombre y se pide una fórmula. Los dos tipos se resuelven con las reglas de la nomenclatura, pues esta es la que se ocupa propiamente de dar descriptores (nombres y fórmulas son dos de ellos) a las sustancias químicas de las que se tiene la suficiente información. Por tanto, la sección tiene poco de formulación y mucho de nomenclatura, y la palabra *formulación* quizá no debería estar.

conocer [...] sus números de oxidación Solo se necesita saber qué elementos solo presentan uno positivo (alcalinos, alcalino-térreos...) o presentan varios, pero solo uno negativo (halógenos...), y saber deducirlo por el número de su grupo en la tabla periódica (el grupo 1 está a uno del 18 en un sentido y el 17 también, pero en el contrario, etcétera). Sobra la tabla de números de oxidación (todos los ejercicios propuestos se pueden hacer sin ella, como se puede comprobar), pero falta la secuencia de los elementos (la vi del Libro Rojo) con la que se ordenan los símbolos en las fórmulas de los compuestos binarios (hidruros, óxidos...), así como las palabras en sus nombres.

se intercambian los números de oxidación En general, la regla del intercambio no es la mejor (ni siquiera con el hidrógeno: ¿qué ocurre con los boranos?). Y en los hidruros de los metales el número de oxidación del hidrógeno es –1, y no «1» («el del hidrógeno que, como es 1, no se escribe» debería redactarse de otro modo).

Tradicional, p. 143 Ácido fluorhídrico, ácido clorhídrico... y ácido telurhídrico no son nombres de sustancias químicas, es decir, no son nombres de «compuestos de una composición definida» (IR-8.1) y, por tanto, no tienen fórmula: no hay fórmula para la mezcla en proporción variable de agua y cloruro de hidrógeno y las especies resultantes de la disociación iónica.

Es decir, no son los compuestos HF, HCl... y H₂Te los que reciben los nombres ácido fluorhídrico, ácido clorhídrico... y ácido telurhídrico, ni siquiera disueltos en agua. Esos nombres son de las correspondientes disoluciones acuosas, que no de los compuestos que se disuelven en agua, y no son nombres de la nomenclatura. No se pueden asociar, pues, HF y ácido fluorhídrico, HCl y ácido clorhídrico, etcétera.

con [...] los grupos 13, 14 y 15 [...] el hidrógeno es –1 Por la secuencia de los elementos de la TABLA VI del Libro Rojo —ausente en el texto— el hidrógeno es solo el **formalmente** «electronegativo» [5, FIGURA 1]. En el amoniaco o en el ion amonio, el nitrógeno es realmente más electronegativo que hidrógeno, el número de oxidación del nitrógeno es –3 y el del

hidrógeno +1, no -1 [10, p. 309]. Además, para dar nombres como los de trihidruro de nitrógeno no importan las electronegatividades reales ni que el estado de oxidación de nitrógeno e hidrógeno sean unos u otros: lo importante son sus posiciones relativas en la secuencia de los elementos que se basa en la tabla periódica (IR-2.15.3.1). Por último, y dado que en 3.º de ESO es muy muy poca la nomenclatura que se puede dar, es mejor —y facilita más las cosas—, por ejemplo, el nombre sulfuro de dihidrógeno que el de sulfuro de hidrógeno (nota *e* de la TABLA IR-6.1).

Tradicional La nomenclatura «tradicional» no está admitida por la IUPAC, lo que ocurre es que hay muchos nombres vulgares aceptados —y relacionados en varias partes del Libro Rojo— que son los mismos que aquella daba. Un nombre vulgar aceptado no necesita derivación, necesita estar en el Libro Rojo. Los nombres borano, metano, fosfano, arsano y silano no son nombres vulgares aceptados (que es lo que se querrá decir al incluirlos en la columna titulada «Tradicional»), sino todo lo contrario: son nombres de hidruros progenitores en otra de las tres nomenclaturas fundamentales de 2005 (la de sustitución). El nombre de amoniaco, en cambio, sí es un nombre vulgar aceptado (y mucho).

óxidos [...] en todos el oxígeno [...] con [...] −2 Esto no es así en general, como enseguida se muestra en el mismo texto al hablar de los peróxidos en la página siguiente. En la nomenclatura de composición, los compuestos binarios con oxígeno que tengan a este elemento antes que el otro en la secuencia de la citada TABLA VI pueden tener un nombre estequiométrico sencillo con la palabra óxido (o esta con prefijo). Muchas veces el oxígeno tendrá el número de oxidación −2, como en BaO, pero un ejemplo en que no es así es el del BaO₂, que puede llamarse dióxido de bario, además de peróxido de bario y de otra manera (IR-5.4.2.3), y como el bario solo presenta el número de oxidación +2, resulta que el oxígeno aquí tiene el −1.

Obedecen a la fórmula general X₂ (O₂)_n, p. 145 En el mismo texto hay ejemplos que no la cumplen: BaO₂ es uno. Se está pensando en el intercambio y en la posterior simplificación, lo que ya he dicho que no es lo mejor. En el ejemplo para 3.º de ESO, la fórmula que suma cero en las cargas (las sustancias son neutras electricamente) con los iones dados Ba²⁺ y $O_2^{2^-}$ es simplemente la que tiene uno del primero por cada uno del segundo, sin más.

monohidróxido de sodio El prefijo no se justifica (no existe el dihidróxido de sodio, por ejemplo). Recuérdese que el prefijo mono- es superfluo en general (IR-5.2).

ordenación establecida por la IUPAC, p. 146 La secuencia de los elementos es algo más. No hace falta concretar los elementos (en 3.º de ESO no tienen que conocer más que unos pocos), sino cómo se recorre la tabla periódica. La excepción es que el H se coloca en la secuencia para que tanto el amoniaco como el agua tengan sus fórmulas familiares: NH₃ pero H₂O. Dar el recorrido completo en la tabla es más fácil que pedir que se memoricen la lista de 14 que se da en el texto (y en la que se puede echar en falta alguno).

(mono)sulfuro de (di)potasio Cuando el compuesto con dos potasios por cada azufre se quiere dar con prefijos, el nombre es el de sulfuro de dipotasio (sulfuro va antes que potasio por la secuencia de los elementos). El prefijo mono- es completamente superfluo aquí: si hay uno (está el di-), es señal de que se está recurriendo a ellos, de donde se deduce que el prefijo que falta es el mono-. (Tampoco H₂S es monosulfuro de dihidrógeno; es sulfuro de dihidrógeno, como se ha dicho ya).

las normas IUPAC admiten la nomenclatura tradicional, p.147 La IUPAC acepta determinados nombres vulgares, que no es exactamente lo mismo (ácido sulfúrico sí, ácido crómico no, por ejemplo).

ácido permangánico Esta es una muestra clara de la confusión nomenclatura tradicional / nombres vulgares aceptados. El nombre de ácido permangánico no está en ninguna parte del Libro Rojo como uno de los nombres vulgares aceptados. Por tanto, sencillamente no es un nombre de la IUPAC.

+2 / hipo-...-oso / H_2XO_2; No se pueden dar estas «recetas». Los nombres vulgares aceptados deben comprobarse uno a uno en el Libro Rojo. Ya he dicho que H_2CrO_4 no puede llamarse ácido crómico ni $HMnO_4$ llamarse ácido permangánico, a pesar de ser de dos de los tipos de las recetas. Otros ejemplos son el H_2SO_2 , que no tiene el nombre vulgar aceptado de ácido hiposulfuroso, o el «HNO», que en realidad es $H_2N_2O_2$ y no se llama ácido hiponitroso... (v. las TABLAS IR-8.1 y IX del Libro Rojo).

Ácido clorhídrico / Ácido sulfhídrico No son nombres de compuestos de composición definida, no son nombres de la nomenclatura.

Nomenclatura tradicional, p. 148 Si se dice que se están siguiendo las recomendaciones de la IUPAC, no se puede pedir que se complete una columna en una tabla con nombres de la «nomenclatura tradicional». Se podrían pedir los nombres vulgares *aceptados*, si los hubiera.

Y ni borano ni arsano son de la «nomenclatura tradicional», sino hidruros progenitores en la importante nomenclatura de sustitución.

Anexo 5

Enumeración de los errores en la nomenclatura de química inorgánica del libro de 3.º de ESO de la editorial Edelvives, de 2015 (ISBN: 978-84-263-9927-4 / Volumen: *Química* / pp. 102-109).

Al contrario que en el Libro Rojo ^[4], hay una pronta separación en familias (óxidos, haluros de oxígeno, peróxidos, etcétera). Puede ser mejor introducir antes normas generales y los descriptores de determinadas especies importantes (iones...) y, después, aplicarlo a ejemplos agrupados por tipos de compuestos. La nomenclatura de los elementos (dihidrógeno, diyodo, trioxígeno...), que falta, quedaría así también incluida.

Algunos errores no los cito a veces cuando se repiten. Un resumen sería:

- 1. Falta la nomenclatura de los elementos.
- 2. Se interpreta mal la secuencia de los elementos (y se contradice con la variación del carácter metálico que como propiedad periódica se da en el libro, en la p. 96).
- 3. Da una tabla innecesaria de números de oxidación y luego números de oxidación equivocados (pero con nombres de las sustancias correctos).
- 4. Se usa un recurso de la nomenclatura —el número de carga— fuera de su ámbito de aplicación, y se presenta también así en los ejercicios.
- 5. En los iones homopoliatómicos está desaconsejado el número de oxidación, y se
- 6. La terminación -uro se usa mal para el selenio (no es seleniuro, sino selenuro).
- 7. Todos los ejercicios son (estrictamente) de nomenclatura, y la sección dice ser también de formulación.

Formulación, p. 102 De averiguar la composición, la estructura... de las sustancias se ocupan la química (la analítica y otras) y la física en general. Una vez que se tiene esta información, de cómo se ha de escribir concretamente la fórmula o fórmulas se ocupa la nomenclatura [4, IR-4], no la formulación. La nomenclatura no solamente se ocupa de los nombres:

El fin principal de la nomenclatura química es simplemente proporcionar una metodología para asignar descriptores (nombres y fórmulas) a las sustancias químicas (pp. 3-4 del Libro Rojo en español).

Es decir, que para una sustancia química la nomenclatura no es solo «el conjunto de reglas para nombrarla» una vez que la formulación ha averiguado su fórmula.

es necesario conocer [...] los números de oxidación de todos los elementos que... No es necesario conocer con exactitud, ni mucho menos, los números de oxidación de todos los elementos de un compuesto (en el mismo texto se dan nombres de hidruros correctos con números de oxidación equivocados, así que no deben ser tan necesarios).

Para llamar óxido de dipotasio (ejemplo 7. de la p. 80 del Libro Rojo) al compuesto que sé (por el análisis químico, por ejemplo) que tiene dos átomos de potasio por cada átomo de oxígeno no necesito de ningún número de oxidación (ni de la fórmula). Solo son necesarias las recomendaciones de la nomenclatura (en la secuencia de elementos de la TABLA VI el oxígeno va antes, hago uso de la tabla de prefijos...). También hay recomendaciones para escribir la fórmula con la información dada, y esta es entonces K₂O, sin necesidad alguna de ningún número de oxidación.

Y si me preguntan, sin la información anterior, por la fórmula del compuesto que forman el oxígeno y el potasio me están haciendo una pregunta equivocada: el oxígeno y el potasio pueden formar más de un compuesto. Por la tabla periódica sé que el potasio es del grupo 1 y *deduzco* que siempre presentará el número de oxidación +1 o el catión K⁺, así que por este lado no hay problema. Pero el oxígeno no tiene necesariamente que presentar un único número de oxidación, así que de nada me sirve haberlos memorizado todos para decidirme sin más información por uno u otro y formular entonces un único compuesto binario. Es decir, no puedo formular unívocamente desde los números de oxidación cuando tengo delante un nombre, casi ignorando el nombre. Tengo que hacer uso de la información del nombre, y entonces es cuando se puede revelar inútil haberse estudiado antes los cuatro números de oxidación posibles del oxígeno, porque el nombre puede llevar a la fórmula sin ellos o porque puede llevar directamente el que importa o lo implica.

Por ejemplo, nombres como los de óxido de dipotasio y óxido de potasio llevan a K_2O , el segundo porque «óxido» sin más implica oxígeno con número de oxidación -2 o con carga 2-. Nombres como los de dióxido(2-) de potasio y peróxido de potasio, a la K_2O_2 , el segundo porque «peróxido» implica el número de carga 2- para el ion homodiatómico. (V. los ejemplos 7, 8, 9 y 10 de la IR-5.4.2.3). Otro ejemplo es el de cloruro de hierro(III); el número de oxidación del hierro ya me dicen y el del cloro se deduce de su posición en la tabla periódica y de que el número, en este caso, tiene que ser negativo.

el número de oxidación es... El número de oxidación *no* «representa el número de electrones que el átomo de un elemento químico recibe [...] o que pone a disposición de otros [...] para formar un compuesto». En el agua, por ejemplo, el oxígeno no forma realmente el ion monoatómico O^{2-} y se tiene oxígeno(II).

tabla con estados de oxidación Los que se usan sin que se den en el nombre se pueden deducir fácilmente de la posición en la tabla periódica. Los de las fórmulas, suelen poder calcularse si se quieren para los nombres. No son necesarias estas tablas (v. más abajo).

se intercambian los números de oxidación, p. 103 La regla del intercambio no es la mejor^[8], pero es que, además, en el texto se presenta como una recomendación de la IUPAC. La IUPAC no recomienda tal regla en el Libro Rojo.

La simplificación, derivada de la regla del intercambio, es innecesaria cuando se procede directamente: ¿qué compuesto se forma con los iones Ba^{2+} , O^{2-} ? ¿Y con los K^+ y los O_2^{2-} ? Evidentemente, si por cada Ba^{2+} hay un O^{2-} el compuesto es eléctricamente neutro y la fórmula es BaO, sin que ni siquiera haya que pensar en simplificar. Y, en el otro, son necesarios dos K^+ por cada O_2^{2-} , y la fórmula es naturalmente la K_2O_2 , sin que tenga sentido plantearse siquiera que se se simplifica como una excepción.

en orden creciente al carácter metálico establecido por la IUPAC La secuencia de los elementos de la TABLA VI del Libro Rojo no es una secuencia en la que aumente el caracter metálico: al pasar del plomo al boro, por ejemplo, es obvio que no aumenta tal carácter, sino todo lo contrario. La IUPAC nunca ha establecido en 2005 «un orden creciente al caracter metálico». Por otra parte, tal cosa no es algo que pueda establecerse, sino que es una propiedad de los elementos que es la que es.

Y en la secuencia que se ofrece en el texto falta el grupo 18.

excepto con los gases nobles, p. 104 El oxígeno también forma compuestos con los gases nobles, y se conocen bien desde hace tiempo [10, pp. 900-905].

Óxido de nitrógeno(1+) El nitrógeno no presenta en el N_2O un ion monoatómico y monopositivo. En la IR-5.4.2.2 se dice que «el número de carga es [...] la carga iónica».

El nombre de composición más adecuado es el de óxido de dinitrógeno, aunque también es válido el de óxido de nitrógeno(I). Pero nótese que en la serie de los óxidos del nitrógeno no puede usarse el nombre de óxido de nitrógeno(IV), ya que hay dos (el NO_2 y el N_2O_4) con el nitrógeno(IV).

el carácter metálico de los halógenos es menor que el del oxígeno, p. 105 Difícilmente el yodo va a ser menos metálico que el oxígeno: el diyodo sólido tiene brillo metálico. Y la IUPAC no dice eso con su importante secuencia de los elementos, que, en los compuestos binarios, solo es un convenio para escribir «el elemento al que se llega primero cuando se sigue la flecha [...] como si se tratara de un anión» [5, FIGURA 1].

Son [...] un metal con el ion peróxido En el peróxido de dihidrógeno no está tal ion.

son más metálicos, p. 106 Ni los elementos de los grupos 13, 14 y 15 son todos más metálicos que el hidrógeno ni esta es la razón de que sus combinaciones binarias con el hidrógeno tengan a este a la derecha en las fórmulas (v. más abajo). El nitrógeno, por ejemplo, es claramente más electronegativo que el hidrógeno. Tampoco todos los de los grupos 16 y 17 son menos metálicos.

denominación común Los nombres borano, alumano... y astatano son nombres progenitores de una de las tres nomenclaturas sistemáticas fundamentales, no nombres comunes.

el hidrógeno [...] con los grupos 13, 14 y 15 [...] con –1 Este es un error extendido y en el que seguramente se cae, bien al creer que la secuencia de los elementos de la TABLA VI del Libro Rojo es de electronegatividades reales (y repartir los electrones de los enlaces de acuerdo con ella), bien al creer que la terminación -uro implica siempre un número de oxidación negativo. En el amoniaco, por ejemplo, el hidrógeno tiene el número de oxidación +1 [10, p. 309]. Y En la IR-5.4.2.2 del Libro Rojo puede leerse:

El hidrógeno se considera positivo (número de oxidación I) cuando está combinado con elementos no metálicos, y negativo (número de oxidación –I) cuando está combinado con elementos metálicos.

Y el nitrógeno es un elemento no metálico.

Seleniuro de hidrógeno, p. 107 Es selenuro, no seleniuro [4, TABLA IX]. Además, el nombre sistemático de composición es selenuro de dihidrógeno, aunque se acepta selenuro de hidrógeno. Igualmente, es preferible sulfuro de dihidrógeno a sulfuro de hidrógeno.

Sulfuro de fósforo(3+), p. 108 No hay ion P^{3+} en el P_2S_3 . Un problema de la misma naturaleza se presenta en el nombre tetracloruro de carbono(4+) o en el...

Triseleniuro de diarsénico Debía ser triselenuro de diarsénico, y también están mal seleniuro de arsénico(III)...

de las tres formas que permite la..., p. 109 El número de carga, que es preferiblemente para iones, no se debería usar en la molécula (no hay iones si es una molécula) H_2O_2 del ejercicio 25.

Hidruro de mercurio(1) En el ejercicio 28b, el ion Hg_2^{2+} es el ion dimercurio(2+). En la IR-5.4.2.2 del Libro Rojo se advierte de que no se recomienda el uso de los números de oxidación al nombrar iones homopoliatómicos...

30d. Seleniuro de... / 32j. Triseleniuro de... Otra vez debía haber sido selenuro de..., triselenuro de...

Sulfuro de carbono(4+) / Bromuro de yodo(3+) / Cloruro de silicio(4+) No existen aquí los cationes C^{4+} , I^{3+} , Si^{4+} .

Tablas de nombres vulgares o no completamente sistemáticos pero aceptados

Estas tablas incluyen los nombres vulgares, los no completamente sistemáticos y otros alternativos aceptados por la IUPAC para las especies de la química inorgánica. También se dan las fórmulas asociadas. Todos pueden encontrarse en el Libro Rojo de 2005, principalmente en el capítulo IR-8 y en la TABLA IX. La nomenclatura orgánica recurre a una lista de estos nombres para derivar otros muchos (fosfato de trimetilo, por ejemplo), pero estos derivados, salvo unas pocas excepciones, no se cuentan aquí. Tampoco los ligandos de la TABLA VII.

Se pretende con estos cuadros facilitar las consultas, sobre todo para evitar que nombres vulgares no aceptados se presenten erróneamente como si fueran de la nomenclatura de la IU-PAC.

En el propio Libro Rojo original es comprensible que haya (y hay) erratas (v. las referencias). Independientemente de estas, hay unas pocas que he encontrado en la versión española —las señalé en 2011^[6] —y las corrijo en su lugar en las diferentes tablas, pero también las reúno en la primera.

Pág. **Errata** Correcto SiF_6 hexafluoro- λ^6 -sulfano 101 SiF_{ϵ} hexafluoro- λ^6 -silano H₂SeO₃ ácido selenónico HSeHO₃ ácido selenónico 130 $H_2P_2O_7^{2-}$ dihidrogeno(difosfato) $H_2P_2O_7^{2-}$ dihidrogeno(difosfato)(2-) 134 HCN 'hidruronitrocarbono' HCN hidruronitrurocarbono 135 H₂Te telanuro de dihidrógeno H₂Te telururo de dihidrógeno 309 309 H₂Te telanuro de hidrógeno H₂Te telururo de hidrógeno

Tabla 7. Erratas en el Libro Rojo

Bibliografía

- 1. M. Sauret y J. Soriano, *Física y Química*. 1.º de bachillerato, Bruño, Madrid, 2015 (ISBN: 978-84-696-0935-4).
- 2. Rodríguez et al., *Física y Química*. 1.º de bachillerato, McGraw-Hill, Madrid, 2015 (ISBN: 978-84-481-9154-2).
- 3. P. Nacenta et al., *Física y Química*. 1.º de bachillerato, SM, Madrid, 2015 (ISBN: 978-84-675-7651-1).
- 4. N. G. Connelly, T. Damhus, R. M. Hartshom y A. T. Hutton (Eds.), Nomenclature of Inorganic Chemistry. IUPAC Recommendations 2005, The Royal Society of Chemistry, Cambridge, 2005. Disponible en bit.ly/1SiYpNu b) M. Á. Ciriano y P. Román (traductores), N. G. Connelly, T. Damhus, R. M. Hartshom y A. T. Hutton, (Eds.), Nomenclatura de química inorgánica. Recomendaciones de la IUPAC de 2005, Prensas Universitarias de Zaragoza, Zaragoza, 2007; ISBN 978-84-7733-905-2. c) Red Book Corrections. Disponible en bit.ly/10HcEcl.
- 5. M. Á. Ciriano y P. Román, *Guía breve para la nomenclatura de química inorgánica*, traducción de la inglesa de la IUPAC. Disponible en <a href="https://bitsubscholer.com/bitsubschol/b
- 6. S. Olivares, Nomenclatura de química inorgánica. Recomendaciones de la IUPAC de 2005. Una adaptación del Libro Rojo a bachillerato, Murcia, 2011. Accesible en <u>bit.ly/24HV6rQ</u>.
- 7. S. Olivares, *Recomendaciones de la IUPAC de 2005: ¿clorurosodio?*, Murcia, 2014. Disponible en el IES Floridablanca: bit.ly/1MWZw9z.
- 8. S. Olivares, Revista Eureka sobre Enseñanza y Divulgación de las Ciencias 11(3), 416-425, 2014.
- 9. F. Burriel, F. Lucena, S. Arribas y J. Hernández, *Química analítica cualitativa*. 18. ed., Thomson, Madrid, 2002.
- 10. R.J. Gillespie, D.A. Humphreys, N.C. Baird y E.A. Robinson, *Química*, Reverté, Barcelona, 1990
- 11. I.N. Levine, *Físicoquímica*, 5.^a ed., McGraw-Hill, Madrid, 2004.
- 12. L. Pauling, Química General, [1953], Aguilar, Madrid, 1955.

OTROS MATERIALES DE INTERÉS

Pascual Román Polo Luis Ignacio García González Salvador Olivares Campillo

En este capítulo se recogen algunos documentos, que por su interés para profesores y estudiantes de enseñanza secundaria y bachillerato, se incluyen aquí para que puedan ser manejados más fácilmente. Algunos han sido publicados y otros no. Todos ellos fueron consultados para la elaboración de los documentos anteriores. A continuación, se indican algunos de estos documentos que se hallan en webs que recomendamos su visita (Tabla 1).

Tabla 1. Páginas web recomendadas.

Páginas web	Comentarios
bit.ly/1Sph4HP	Apuntes de nomenclatura Química Inorgánica. FisQuiWeb.Luis Ignacio Garcia, I.E.S La Magdalena, Avilés, Asturias, visitada el 08/04/2016.
bit.ly/1MjlL9x	Nomenclatura de química inorgánica. Salvador Olivares Campillo, IES Floridablanca, Murcia, visitada el 08/04/2016.
bit.ly/24hT8yd	FiQuiPedia. Nomenclatura de química inorgánica. Elaborado por Enrique García Simón, visitada el 08/04/2016.
bit.ly/10HcEcl	Corrections to Nomenclature of Inorganic Chemistry: IUPAC Recommendations 2005, Royal Society of Chemistry, 2005, visitada el 08/04/2016.

Los documentos que se incluyen a continuación, se han seleccionado porque tienen interés para ampliar los conocimientos de nomenclatura de química inorgánica para profesores de secundaria y bachillerato y estudiantes interesados (Tabla 2).

Tabla 2. Documentos de consulta recomendados.

Documento	Comentarios	
Brief Guide	Brief Guide to the Nomenclature of Inorganic Chemistry, IUPAC, octubre 2015.	
Guía Breve	Guía Breve para la Nomenclatura de Química Inorgánica, IUPAC, noviembre 2015.	
Nomenclatura química inorgánica básica	Nomenclatura química inorgánica básica, Química e Industria, № 609, abril-junio 2014, pp. 34-41.	
Breve historia de la tra- ducción	Breve historia de la traducción del <i>Libro rojo</i> de 2005 de la IUPAC, Panacea, Nº IX (28), pp. 171-176.	
Guía sobre el uso de la Nomenclatura de Quí- mica Inorgánica	Guía sobre el uso de la Nomenclatura de Química Inorgánica para las Pruebas de Acceso a la Universidad, Departamento de Química Inorgánica, Universidad de La Rioja, 2015.	

NOISIAIG

Brief Guide to the Nomenclature of Inorganic Chemistry

R. M. Hartshorn (New Zealand), * K.-H. Hellwich (Germany), A. Yerin (Russia), T. Damhus (Denmark), A. T. Hutton (South Africa). *E-mail: inorganic nomenclature@iupac.org. Sponsoring body: IUPAC Division of Chemical Nomenclature and Structure

PREAMBLE

The universal adoption of an agreed chemical nomenclature is a key tool for communication in the chemical sciences, for computerbased searching in databases, and for regulatory purposes, such as those associated with health and safety or commercial activity. The International Union of Pure and Applied Chemistry (IUPAC) provides recommendations on the nature and use of chemical nomenclature. The basics of this nomenclature are shown here, and in companion documents on the nomenclature systems for organic chemistry2 and polymers,3 with hyperlinks to the original documents. An overall summary of chemical nomenclature can be found in Principles of Chemical Nomenclature.4 Greater detail can be found in the Nomenclature of Inorganic Chemistry, colloquially known as the Red Book, 3 and in the related publications for organic compounds (the Blue Book)6 and polymers (the Purple Book).7 It should be noted that many compounds may have non-systematic or semi-systematic names (some of which are not accepted by IUPAC for several reasons, for example because they are ambiguous) and TUPAC rules allow for more than one systematic name in many cases. IUPAC is working towards identification of single names which are to be preferred for regulatory purposes (Preferred IUPAC Names, or PINs). Note: In this document, the symbol '=' is used to split names that happen to be too long for the column format, unless there is a convenient hyphen already present in the name.

The boundaries between 'organic' and 'inorganic' compounds are blurred. The nomenclature types described in this document are applicable to compounds, molecules and ions that do not contain carbon, but also to many structures that do contain carbon (Section notably those containing elements of Groups 1 - 12. Most boron-containing compounds are treated using a special nomenclature.

STOICHIOMETRIC OR COMPOSITIONAL NAMES

A stoichiometric or compositional name provides information only on the composition of an ion, molecule, or compound, and may be related to either the empirical or molecular formula for that entity. It does not provide any structural information.

For homoatomic entities, where only one element is present, the name is formed (Table 1) by combining the element name with the appropriate multiplicative prefix (Table 2). Ions are named by adding charge numbers in parentheses, e.g. (1+), (3+), (3+), (3-), and for (most) homoatomic anion names 'ide' is added in place of the 'en', 'ese', 'ic', 'ine', 'ium', 'ogen', 'on', 'orus', 'um', 'ur', 'y' or 'ygen endings of element names.9 Exceptions include Zn and Group 18 elements ending in 'on', where the 'ide' ending is added to the element names. For some elements ($\epsilon.g$. Fe, Ag, Au) a Latin stem is used before the 'ide' ending (cf. Section 2.3).9 Certain ions may have acceptable traditional names (used without charge numbers).

To cite, please use: IUPAC, Pure Apol. Chem. Doi: 10.1515/pgc-2014-0718 Publication of this document by any means is permitted on condition that it is whole and unchanged. Copyright C IUPAC & De Gruyter 2015.

Freely available at: (a) http://www.iupac.org/publications/pac/;
(b) http://www.chem.gnul.ac.uk/iupac/.

(b) http://www.chem.qinul.ac.uk/inpac/.

²K.-H. Hellwich, R. M. Hartshorn, A. Yerin, T. Damhus, A. T. Hutton, Brief Guide to the Nomenclature of Organic Chemistry, Pure Appl. Chem., in preparation.

³R. C. Hiorns, R. J. Boucher, R. Duhlev, K.-H. Hellwich, P. Hodge, A. D. Jenkins, R. G. Jones, J. Kahovec, G. Moad, C. K. Ober, D. W. Smith, R. F. T. Stepto, J.-P. Vairon,

Volsidal, Pure Appl. Chem. 84(10), 2167–2169 (2012).
 Principles of Chemical Nomenclature – A Guide to IUPAC Recommendations, 2011 Edition, G. J. Leigh (Ed.), Royal Society of Chemistry, Cambridge, U.K., ISBN 978-1-

Nomenciature of Inorganic Chemistry – IUPAC Recommendations 2005, N. Connelly, T. Damhus, R. M. Hartshorn, A. T. Hutton (Eds.), Royal Society of Chemistry, Cambridge, U.K., ISBN 0-85404-438-8.

Nomenclature of Organic Chemistry – IUPAC Recommendations and Preferred Names 2013, H. A. Favre, W. H. Powell (Eds.), Royal Society of Chemistry, Cambridge, U.K., ISBN 978-0-85404-182-4.

Compendium of Polymer Terminology and Nomenciature – IUPAC Recommendations 2008, R. G. Jones, J. Kathovec, R. Stepto, E. S. Wilks, M. Hess, T. Kitayama, W. V. Metanomski (Eds.), Royal Society of Chemistry, Cambridge, U.K., ISBN 978-0-85404-491-7.

Table 1: Examples of homoatomic entities

Formula	Name	Formula	Name		
O ₂	dioxygen	CI"	chloride(1-) or chloride		
Sg	octasulfur	I_3^-	triiodide(1-)		
Na+	sodium(1+)	O ₂ 2-	dioxide(2-) or peroxide		
Fe3+	iron(3+)	N ₃	trinitride(1-) or azide		

Table 2: Multiplicative prefixes for simple and complicated

No.	Simple	Complicated	No.	Simple	Complicated
2	di	bás	8	octa	octakis
3	tri	tris	9	попа	nonakis
4	tetra	tetrakis	10	deca	decakis
5	penta	pentakis	11	undeca	undecakis
6	hexa	hezakis	12	dodeca	dodecakis
7	hopta	heptakis	20	icosa	icosakis

Binary compounds (those containing atoms of two elements) are named stoichiometrically by combining the element names and treating, by convention, the element reached first when following the arrow in the element sequence (Figure 1) as if it were an anion. Thus the name of this formally 'electronegative' element is given an 'ide' ending and is placed after the name of the formally 'electropositive' element followed by a space (Table 3).

Figure 1: Element sequence

Table 3: Examples of binary compounds			
Formula	Name	Formula	Name
GaAs	gallium arsenide	FeCl ₂	iron dichloride or iron(II) chloride
CO ₂	carbon dioxide	FeCl ₃	iron trichloride or iron(III) chloride
CaF ₂	calcium difluoride	H ₂ O ₂	dihydrogen dioxide

Again, multiplicative prefixes (Table 2) are applied as needed, and certain acceptable alternative names 10 may be used. Stoichiometry may be implied in some cases by the use of oxidation numbers, but is often omitted for common cases, such as in calcium fluoride

Heteropolyatomic entities in general can be named similarly using compositional nomenclature, but often either substitutive11 or additive nomenclature (Section 2) is used. In the latter case information is also provided about the way atoms are connected. For example, POCl₃ (or PCl₃O, compositional name phosphorus trichloride oxide) is given an additive name in Table 10

Certain ions have traditional short names, which are commonly used and are still acceptable (e.g., ammonium, NH₄; hydroxide, OH; nitrite, NO₂; phosphate, PO₄3; diphosphate, P₂O₇4).

Inorganic compounds in general can be combinations of cations, anions and neutral entities. By convention, the name of a compound is made up of the names of its component entities: cations before anions and neutral components last (see examples in Table 4). The number of each entity present has to be specified in order to

reflect the composition of the compound. For this purpose

Table 4: Use of multiplicative prefixes in compositional names			
Formula	Name		
$Ca_1(PO_4)_2$	tricalcium bis(phosphate)		
Ca ₃ P ₂ O ₇	dicalcium diphosphate		
BaO ₂	barium(2+) dioxide(2+) or barium peroxide		
MgSO ₄ -7H ₂ O	magnesium sulfate heptaltydrate		
CdSO ₄ -6NH ₃	cadmium sulfate—ammonia (1/6)		
AIK(SO ₄) ₂ :12H ₂ O	aluminium potassium bis(sulfate)—water (1/12) or aluminium potassium bis(sulfate) dodecahydrate		
$Al_3(SO_4)_3 \cdot K_3SO_4 \cdot$	dialuminium tris(sulfate)—dipotassium sulfate—		
24H ₂ O	water (1/1/24)		

Reference 4, Chapter 10

Reference 5, Table IX.

Reference 4, Table P10.
Reference 5, Chapter IR-6.

Otros materiales de interés (Brief Guide)

multiplicative prefixes (Table 2) are added to the name of each entity. The prefixes are 'di', 'tri', 'tetra', etc., for use with names for simple entities, or 'bis()', 'tris()', 'tetrakis()', etc., for names for most entities which themselves contain multiplicative prefixes or locants. Care must also be taken in situations when use of a simple multiplicative prefix may be misinterpreted, e.g., tris(iodide) must be used for 31" rather than triiodide (which is used for I3"), and bis(phosphate) rather than diphosphate (which is used for $P_2O_7^{4-}$). Examples are shown in Table 4. There is no elision of vowels (e.g., tetraaqua, pentaoxide), except in the special case of monoxide

Names of neutral components are separated by 'em' dashes without spaces. Inorganic compounds may themselves be components in (formal) addition compounds (last four examples in Table 4). The ratios of component compounds can be indicated, in general, using a stoichiometric descriptor in parentheses after the name (see the last three examples in Table 4). In the special case of hydrates, multiplicative prefixes can be used with the term 'hydrate'

COMPLEXES AND ADDITIVE NOMENCLATURE

2.1 Overall approach

Additive nomenclature was developed in order to describe the structures of coordination entities, or complexes, but this method is readily extended to other molecular entities as well. Mononuclear complexes are considered to consist of a central atom, often a metal ion, which is bonded to surrounding small molecules or ions, which are referred to as ligands. The names of complexes are constructed (Table 5) by adding the names of the ligands before those of the central atoms, using appropriate multiplicative prefixes. Formulae are constructed by adding the symbols or abbreviations of the ligands after the symbols of the central atoms (Section 2.7).

Table 5: Producing names for complexes: simple ligands

Structure to be named	H ₂ N NH ₅ OH ₂ PO	
Central atom(s)	cobalt(III)	2 × rhenium
Identify and name ligands	ammonia → ammine water → aqua	chloride → chlorido
Assemble name	pentaammineaqua= cobalt(III) chloride	caesium bis(tetrachlorido= rhenate)(Re—Re)(2-)

2.2 Central atom(s) and ligands

The first step is to identify the central atom(s) and thereby also the ligands. By convention, the electrons involved in bonding between the central atom and a ligand are usually treated as belonging to the ligand (and this will determine how it is named)

Each ligand is named as a separate entity, using appropriate nomenclature4 - usually substitutive nomenclature for organic ligands^{2,4,6} and additive nomenclature for inorganic ligands. A small number of common molecules and ions are given special names when present in complexes. For example, a water ligand is represented in the full name by the term 'aqua'. An ammonia ligand is represented by 'ammine', while carbon monoxide bound to the central atom through the carbon atom is represented by the term 'carbonyl' and nitrogen monoxide bound through nitrogen is represented by 'nitrosyl'. Names of anionic ligands that end in 'ide', 'ate', or 'ite' are modified within the full additive name for the complex to end in 'ido', 'ato', or 'ito', respectively. Note that the 'ido' ending is now used for halide and oxide ligands as well. By convention, a single coordinated hydrogen atom is always considered anionic and it is represented in the name by the term 'hydrido', whereas coordinated dihydrogen is usually treated as a neutral two-electron donor entity

2.3 Assembling additive names
Once the ligands have been named, the name can be assembled. This is done by listing the ligand names in alphabetical order before the name of the central atom(s), without regard to ligand charge. If there is more than one ligand of a particular kind bound to a central atom in the same way, the number of such identical ligands is indicated using the appropriate multiplicative prefix for simple or complicated ligands (Table 2), not changing the already established alphabetical order of ligands. The nesting order of enclosing marks, for use in names where more than one set of enclosing marks is

required, is: (), [()], [[()]}, ({[()]}), etc.

Any metal-metal bonds are indicated by placing the central atom symbols in parentheses, in italics and connected by an 'em' dash, after the name of the complex (without spaces). The charge number of the complex or the oxidation number of the central atom is appended to the name of the complex. For anions that are named additively, the name of the central atom is given the 'ate' ending in a similar way to the 'ide' endings of homoatomic anions (Section 1). In some cases, by tradition, the Latin stem is used for the 'ate' names, such as in ferrate (for iron), cuprate (for copper), argentate (for silver), stannate (for tin), aurate (for gold), and plumbate (for lead). Finally, the rules of compositional nomenclature (Section 1) are used to combine the additive names of ionic or neutral coordination entities with the names of any other entities that are part of the compound.

2.4 Specifying connectivity

Some ligands can bind to a central atom through different atoms under different circumstances. Specifying just which ligating (coordinating) atoms are bound in any given complex can be achieved by adding κ-terms to the name of the ligand. The κ-term comprises the Greek letter K followed by the italicised element symbol of the ligating atom. For more complicated ligands the kterm is often placed within the ligand name following the group to which the κ -term refers. Multiple identical links to a central atom can be indicated by addition of the appropriate numeral as a can be indicated by addition of the appropriate superscript between the κ and element symbols (see Table 6). These possibilities are discussed in more detail in the Red Book. If the ligating atoms of a ligand are contiguous (i.e., directly bonded to one another), then an η -term is used instead, for example, for many organometallic compounds (Section 2.6) and the peroxido complex in Table 6.

A κ-term is required for ligands where more than one coordination mode is possible. Typical cases are thiocyanate, which can be bound through either the sulfur atom (thiocyanato-κ.S) or the nitrogen atom (thiocyanato-xN), and nitrite, which can be bound through either the nitrogen atom $(M-NO_2, nitrito - \kappa I)$, or an oxygen atom $(M-ONO, nitrito - \kappa I)$. The names pentaammine(nitrito- κN)cobalt(2+) and pentaammine(nitrito- κO)cobalt(2+) are used for

Table 6: Producing names for complexes: complicated ligands

Table 0. Froducing names for complexes, complicated ngands				
Structure to be named				
Central atom	$cobalt(III) \rightarrow cobaltate(III)$	platinum(II)		
Identify and name ligands	2,2',2'',2''-(ethane-1,2-diyl= dinitrilo)tetracetate → 2,2',2'',2''-(ethane-1,2-diyl= dinitrilo)tetracetato	chloride → chlorido triphenylphosphane		
Specify ligating atoms	2,2',2",2"-(ethane-1,2-diyl= dinitrilo-x ² N)tetraacetato-x ⁴ O	not required for chloride triphenylphosphane-scP		
Assemble name	barium [2,2',2",2"-(ethane- 1,2-diyldinitrilo-x ² /)tetra= acetato-x ⁴ /O]cobaltate(III)	dichloridobis(triphenyl= phosphane-x/*)platinum(II)		
Structure to be named	H _M M ₂	Ů.		
Central atom	cobalt(III)	molybdemm(III)		
Identify and name ligands	ethane-1,2-diamine peroxide → peroxido	chloride → chlorido 1,4,8,12- tetrathiacyclopentadecane		
Specify ligating atoms	ethane-1,2-diamine-κ²N η²-peroxido	not required for chloride 1,4,8,12-tetrathiacyclo= pentadecane-c ¹ S ¹ ,S ¹ ,S ¹		
Assemble name	bis(ethane-1,2-diamine-κ²N)= (η²-peroxido)cobalt(III)	trichlorido(1,4,8,12- tetrathiacyclopentadecane- x ² S ¹ ,S ⁴ ,S ⁶)molybdemm(III)		

¹² Reference 5, Table X

Reference 5, Section IR-9.2.4

Otros materiales de interés (Brief Guide)

each of the isomeric nitrito complex cations. More examples of constructing names using x-terms to specify the connectivity of ligands are shown in Table 6. A k-term may also be used to indicate to which central atom a ligand is bound if there is more than one central atom (Section 2.5).

2.5 Bridging ligands

Bridging ligands are those bound to more than one central atom. They are differentiated in names by the addition of the prefix ' μ ' (Greek mu), with the prefix and the name of the bridging ligand being separated from each other, and from the rest of the name, by hyphens. This is sufficient if the ligand is monoatomic, but if the ligand is more complicated it may be necessary to specify which ligating atom of the ligand is attached to which central atom. This is certainly the case if the ligating atoms are of different kinds, and κ-terms can be used for this purpose.

2.6 Organometallic compounds

Organometallic compounds contain at least one bond between a metal atom and a carbon atom. They are named as coordination compounds, using the additive nomenclature system (see above).

The name for an organic ligand binding through one carbon atom may be derived either by treating the ligand as an anion or as a neutral substituent group. The compound [Ti(CH2CH2CH3)Cl3] is thus named as trichlorido(propan-1-ido)titanium or as trichlorido(propyl)titanium. Similarly, 'methanido' or 'methyl' may be used for the ligand -CH₃.

When an organic ligand forms two or three metal-carbon single bonds (to one or more metal centres), the ligand may be treated as a di- or tri-anion, with the endings 'diido' or 'triido' being used, with no removal of the terminal 'e' of the name of the parent hydrocarbon. Again, names derived by regarding such ligands as substituent groups and using the suffixes 'diyl' and 'triyl' are still encountered. Thus, the bidentate ligand commonly -CH2CH2CH2- would be named propane-1,3-diido (or propane-1,3-diyl) when chelating a metal centre, and µ-propane-1,3-diido (or μ-propane-1,3-diyl) when bridging two metal atoms.

Organometallic compounds containing a metal-carbon multiple bond are given substituent prefix names derived from the parent hydrides which end with the suffix 'vlidene' for a metal-carbon double bond and with 'ylidyne' for a triple bond. These suffixes either replace the ending 'ane' of the parent hydride, or, more generally, are added to the name of the parent hydride with insertion of a locant and elision of the terminal 'e', if present. Thus, the entity CH_3CH_2CH = as a ligand is named propylidene and (CH₃)₂C= is called propan-2-ylidene. The 'diido'/'triido' approach, outlined above, can also be used in this situation. The terms 'carbene' and 'carbyne' are not used in systematic nomenclature.

$$\begin{array}{c} \text{CI} & P(C_0H_{11})_3 \\ \\ \text{CI} & P(C_0H_{11})_3 \end{array}$$

dichlorido(phenylmethylidene)bis(tricyclohexylphosphane-x/?)ruthe dichlorido(phenylmethanediido)bis(tricyclohexylphosphane+c/)ruthenium, or (benzylidene)dichloridobis(tricyclohexylphosphane+c/)ruthenium

The special nature of the bonding to metals of unsaturated hydrocarbons in a "side-on" fashion via their π -electrons requires

tris(η³-prop-2-en-1-yl)chromium, or tris(η³-allyl)chromium

the eta (n) convention. In this 'hapto' nomenclature, the number of contiguous atoms in the ligand coordinated to the metal (the hapticity of the ligand) is indicated by a right superscript on the eta symbol, e.g., η^3 ("eta three" or "trihapto"). The η -term is added as a prefix to the ligand name, or to that portion of the ligand name most appropriate to indicate the connectivity, with locants if necessary.

3

A list of many π-bonding unsaturated ligands, neutral and anionic, can be found in the Red Book.

Note that the ubiquitous ligand \(\eta^5 - C_5 H_5, \) strictly \(\eta^5 - cyclopenta- \) 2,4-dien-1-ido, is also acceptably named η5-cyclopentadienido or -cyclopentadienyl. When cyclopenta-2,4-dien-1-ido coordinates η³-cyclopentadienyl. When cyclopenta-2,4-usen-1-100 coordinate through one carbon atom via a σ bond, a κ-term is added for explicit indication of that bonding. The symbol η1 should not be used, as the eta convention applies only to the bonding of contiguous atoms in a ligand.

dicarbonyl(η^3 -cyclopentadienido)(cyclopenta-2,4-dien-1-ido- κC^0)iron or dicarbonyl(η^3 -cyclopentadienyl)(cyclopenta-2,4-dien-1-yl- κC^0)iron

Discrete molecules containing two parallel n5-cyclopentadienido ligands in a 'sandwich' structure around a transition metal, as in bis $(\eta^5$ -cyclopentadienido)iron, $[Fe(\eta^5-C_5H_5)_2]$, are generically called **metallocenes** and may be given 'ocene' names, in this case ferrocene. These 'ocene' names may be used in the same way as parent hydride names are used in substitutive nomenclature, with substituent group names taking the forms 'ocenyl', 'ocenediyl', 'ocenetriyl' (with insertion of appropriate locants).

By convention, 'organoelement' compounds of the main group elements are named by substitutive nomenclature if derived from the elements of Groups 13-16, but by additive nomenclature if derived from the elements of Groups 1 and 2. In some cases compositional nomenclature is used if less structural information is to be conveyed. More detail is provided in the Red Book. 15

COMe

2.7 Formulae of coordination compounds

Line formulae for coordination entities are constructed within square brackets to specify the composition of the entity. The overall process is shown in Table 7. The symbol for the central atom is

Table 7: Producing line formulae for com

Table 7. I routing line formulae for complexes			
Structure	H ₀ N NH ₀ NH ₀ acr	30% [
Central atom(s)	රී	2 × Ra	
Ligands	NH ₃ , OH ₂	а	
Assemble formula	$ [\![Co(NH_3)_{\beta}(OH_2)]\!] Cl_3 $	Cs2[Cl,ReReCl,]	
Structure	000 ²¹ 2	P P P P P P P P P P P P P P P P P P P	
Central atom(s)	Co	Pt	
Abbreviate ligands	2,2',2",2"-(ethane-1,2- diyl)dimitrilotetraacetate → edta	Cl triphenylphosphane → PPh ₀	
Assemble formula	Ba[Co(odta)] ₂	[PtCl ₂ (PPh ₃) ₂]	

¹⁴ Reference 5, Table IR-10.4.

Otros materiales de interés (Brief Guide)

placed first and is then followed by the symbols or abbreviations for the ligands (in alphabetical order according to the way they are presented in the formula). Where possible the coordinating (ligating) atom should be placed nearer the central atom in order to provide more information about the structure of the complex. If possible, bridging ligands should be placed between central atom symbols for this same reason (see examples in Section 2.5). Generally ligand formulae and abbreviations are placed within enclosing marks (unless the ligand contains only one atom), remembering that square brackets are reserved to define the coordination sphere. Multiple ligands are indicated by a right subscript following the enclosing marks or ligand symbol.

2.8 Inorganic oxoacids and related compounds

Inorganic oxoacids, and the anions formed by removing the acidic hydrons (H) from them, have traditional names, many of which are well-known and can be found in many textbooks: sulfuric acid, sulfate; nitric acid, nitrate; nitrous acid, nitrite; phosphoric acid, phosphate; arsenic acid, arsenate; arsinous acid, arsinite; silicic acid, silicate; etc. These names are retained in IUPAC nomenclature, firstly because they almost invariably are the names used in practice, and secondly because they play a special role in organic nomenclature when names are needed for organic derivatives. However, all the oxoacids themselves and their derivatives may be viewed as coordination entities and named systematically using additive nomenclature (Table 8).1

Table 8: Examples of inorganic oxoacids and derivatives

	mpics or mor bunge	vacantias nau utili nuito
Formula	Traditional or organic name	Additive name
H ₂ SO ₄ or [S(O) ₂ (OH) ₂]	sulfuric acid	dihydroxidodioxidosulfur
(CH ₃) ₂ SO ₄ or [S(O) ₂ (OMe) ₂]	dimethyl sulfate	dimethoxidodioxidosulfur or dimethanolatodioxidosulfur
H ₃ PHO ₃ or [P(H)(O)(OH) ₂]	phosphonic acid*	hydridodihydroxidooxido= phosphorus
PhP(O)(OH) ₂	phenylphosphonic acid	dihydroxidooxido(phenyl)= phosphorus

Note: The term 'phosphorous acid' has been used in the literature for both the species named phosphonic acid in Table 8 and that with the formula P(OH)₀. orus. It is used in organic r

The traditional oxoacid names may be modified according to established rules for naming derivatives formed by functional replacement16: thus 'thio' denotes replacement of =O by =S; prefixes 'fluoro', 'chloro', etc., and infixes 'fluorid', 'chlorid', etc., denote replacement of -OH by -F, -Cl, etc.; 'peroxy'/'peroxo' denote replacement of -O- by -OO-; and so forth (Table 9)

If all hydroxy groups in an oxoacid are replaced, the compound is no longer an acid and is not named as such, but will have a traditional functional class name 16 as, e.g., an acid halide or amide. Such compounds may again be systematically named using additive nomenclature (Table 10).

A special construction is used in hydrogen names, which allows the indication of hydrons bound to an anion without specifying exactly where. In such names, the word 'hydrogen' is placed at the front of the name with a multiplicative prefix (if applicable) and with no space between it and the rest of the name, which is placed in parentheses. For example, dihydrogen(diphosphate)(2-) denotes H₂P₂O₂2-, a diphosphate ion to which two hydrons have been added, with the positions not known or at least not being specified. One may view the common names for partially dehydronated oxoacids, such as hydrogenphosphate, HPO4 dihydrogenphosphate, $\rm H_3PO_4^-$, as special cases of such hydrogen names. In these simplified names, the charge number and the

Table 9: Examples of derivatives of inorganic oxoacids and anions formed by functional replacement

Formula	Name indicating functional replacement	Additive tisme
H ₃ PS ₄ or	tetrathiophosphoric acid or	tris(sulfanido)sulfido=
[P(S)(SH) ₃]	phosphorotetrathioic acid	phosphorus
H ₃ PFO ₃ or		fluoridodihydroxido=
[PF(O)(OH) ₂]	phosphorofluoridic acid	oxidophosphorus
S ₂ O ₃ 2- or	thiosulfate or sulfurothioate	trioxidosulfido=
[S(O) ₁ (S)] ²⁻		stiffate(2-)
$[O_3S(\mu-O_2)SO_3]^{2-}$	peroxydisulfate	see Section 2.5

Table 10: Examples of functional class names and corresponding additive names

Formula	Functional class name	Additive name
PCl ₃ O	phosphoryl trichloride	trichloridooxido= phosphorus
SCI ₂ O ₂	sulfuryl dichloride	dichloridodioxidosulfur
S(NH ₂) ₂ O ₂	sulfuric diamide	diamidodioxidosulfur

parentheses around the main part of the name are left out. Again, these particular anions may be named systematically by additive nomenclature. The word 'hydrogen' is placed separately in forming analogous names in organic nomenclature, for example, dodecvl hydrogen sulfate, C12H25OS(O)2OH. This difference between the two systems has the consequence that the important carboncontaining ion HCO3 can be named equally correctly as 'hydrogen carbonate' and as 'hydrogencarbonate' (but not as bicarbonate).

STEREODESCRIPTORS

The approximate geometry around the central atom is described using a polyhedral symbol placed in front of the name. The symbol is made up of italicised letter codes for the geometry and a number that indicates the coordination number. Frequently used polyhedral symbols are OC-6 (octahedral), SP-4 (square-planar), T-4 (tetrahedral), SPY-5 (square-pyramidal), and TBPY-5 (trigonalbipyramidal). More complete lists are available. 17

The relative positions of ligating groups around a central atom can be described using a configuration index that is determined in a particular way for each geometry. 18 based on the Cahn-Ingold-Prelog priorities of the ligating groups, 19 and it may change if the ligands change, even if the geometry remains the same. The absolute configuration can also be described. Generally configuration indices are used only if there is more than one possibility and a particular stereoisomer is to be identified. The full stereodescriptors for the particular square-planar platinum complexes shown below are (SP-4-2) and (SP-4-1), for the cts and trans isomers, respectively. Alternatively, a range of traditional stereodescriptors may be used in particular situations. Thus the isomers that are possible when a square-planar centre is coordinated by two ligating groups of one type and two of another are referred to as cis- (when the identical ligands are coordinated next to each other) or trans- (when they are coordinated opposite to each other).

lichloridoplatinum(II)

trans-dian dichloridoplati

Octahedral centres with four ligands of one kind and two of another can also be referred to as cts- (when the two identical ligands are coordinated next to each other) or trans- (when they are coordinated opposite each other). Octahedral centres with three of each of two kinds of ligand can be described as fac- (facial), when the three ligands of a particular kind are located at the corners of a face of the octahedron, or mer- (meridional), when they are not.

This document provides an outline of the essential nomenclature rules for producing names and formulae for inorganic compounds, coordination compounds, and organometallic compounds. The complementary document for nomenclature systems of organic chemistry² will also be useful to the reader.

Names and formulae have only served half their role when they are created and used to describe or identify compounds, for example, in publications. Achieving their full role requires that the reader of a name or formula is able to interpret it successfully, for example, to produce a structural diagram. The present document is also intended to assist in the interpretation of names and formulae.

Finally, we note that IUPAC has produced recommendations on the graphical representation of chemical structures and their stereochemical configurations.²⁰

Reference 4, Table P5; Reference 5, Tables IR-9.2 and IR-9.3.

Reference S, Section IR-9.3.3.
 R. S. Cahn, C. Ingold, V. Prelog, Angew. Chem., Int. Ed. Engl., 5, 385-415 and 511 - K. S. Catn, C. Ingold, V. Prelog, Angew. Chem., Int. Ed. Engl., 5, 385–415 and 511 (1966); V. Prelog, G. Helmchen, Angew. Chem., Int. Ed. Engl., 21, 567–583 (1982).
30 J. Brecher, K. N. Degyarenko, H. Gottlieb, R. M. Harsthorn, G. P. Moss, P. Murray, Rust, J. Nykrai, W. Powell, A. Smith, S. Stein, K. Taylor, W. Town, A. Williams, A. Yerin, Pare Appl. Chem., 78(10), 1897–1970 (2006); J. Brecher, K. N. Degyarenko, H. Gottlieb, R. M. Harsthorn, K.-H. Hellwich, J. Kahovec, G. P. Moss, A. McNaught, J. Nyitrai, W. Powell, A. Smith, K. Taylor, W. Town, A. Williams, A. Yerin, Pare Appl. Chem., 80(2), 277–410 (2008).

DE

DIVISIÓN

Guía Breve para la Nomenclatura de Química Inorgánica

R. M. Hartshorn (Nueva Zelanda),* K.-H. Hellwich (Alemania), A. Yerin (Rusia), T. Damhus (Dinamarca), A. T. Hutton (Sudafrica). *C-e: inorganic nomenclature@iupac.org, Patrocinado por: División de Nomenclatura Quámica y Representación Estructural de la IUPAC.

Traducido y adaptado por: Miguel A. Ciriano (España), † Pascual Român Polo (España). †C-e: mciriano@umizar.es.

INTRODUCCIÓN

La adopción universal de una nomenclatura química consensuada es una herramienta clave para la comunicación eficiente en las ciencias químicas, para la búsqueda con ordenadores en bases de datos y con fines regulatorios, tales como los asociados a la salud y la seguridad o a la actividad comercial. La Unión Internacional de Outmica Pura y Aplicada (IUPAC en sus siglas inglesas) ofrece recomendaciones sobre la naturaleza y el uso de la neguesti de la recomposita de la composita de clatura de química orgánica² y <u>polimeros</u>, con hipervinculos a los nomenciatura de <u>quimica organica</u> y <u>pointieros</u>, con inpervinciais a sió documentos originales. Un resumen general de la nomenciatura química se puede encontrar en <u>Principles of Chemical Nomenciature</u>. Detalles mayores se pueden hallar en <u>Nomenciature</u> of <u>Inorganic Chemistry</u> coloquialmente conocido como el Libro Rojo, y en las publicaciones. relacionadas con <u>compuestos orgánicos</u> (el Libro Azul)⁶ y <u>polimeros</u> (el Libro Purpura).⁷ Cabe señalar que muchos compuestos pueden tener nombres no-sistemáticos o semi-sistemáticos (algunos de los cuales no son aceptados por la IUPAC, por ejemplo, porque son ambiguos) y las reglas IUPAC permiten dar más de un nombre sistemático a un compuesto en muchos casos. La IUPAC está elaborando la identificación de los nombres individuales preferidos a efectos de regulación (Preferred IUPAC Names o

Nota: En este documento, el símbolo '=' se utiliza para dividir los nombres que resultan ser demasiado largos para el formato de la columna, a menos

que ya haya un guión presente en el nombre. Los limites entre compuestos 'orgânicos' e 'inorgânicos' son difusos. Los tipos de nomenclatura descritos en este documento son aplicables a los compuestos, moléculas e iones que no contienen carbono y también a muchas estructuras que contienen carbono (Sección 2), principalmente los que contienen elementos de los grupos 1–12. La mayoria de los compuestos de boro se tratan mediante una nomenclatura especial. ⁸

NOMBRES ESTEQUIOMÉTRICOS O DE COMPOSICIÓN

Un nombre estequiométrico o de composición sólo proporciona información sobre la composición de un ion, molécula o compuesto y puede estar relacionado bien con la fórmula emptrica o con la molecular de esa especie. No proporciona ninguna información estructural. Para las especies homoatómicas, donde únicamente hay un elemento, el

nombre se forma (Tabla 1) combinando el nombre del elemento con el multiplicador pertinente (Tabla 2). Los iones se nombran afiadiendo los números de carga entre parentesis, p. ej. (1^+) , (3^+) , (2^-) y para (la mayoría de) los nombres de los aniones homoatómicos se afiade la para (in mayorin 'uro' en lugar de las terminaciones de los nombres de los elementos: 'eso', 'so', 'so', 'so', 'ogeno', 'ono', u 'oro'.' Las excepciones incluyen el cinc, el oxigeno y los elementos del grupo 18 que acaban en 'on', donde la terminación 'uro' se aflade a los nombres de los elementos. Para algunos elementos (p. cj., S, Fe, Ag, Au) se usa la raiz del nombre en latin antequesta a la terminación 'uro' (cf. Sección 2.3).9 Algunos iones pueden tener nombres tradicionales aceptables (que se usan sin números de

Se permite la publicación de este documento por cualquier medio bajo la co que sea completo e inalterado. Copyright de la versión inglesa C IUPAC & De Gruyter 2015. Publicado en <u>Pure Appl. Chom.</u> 87, 1039–1049 (2015).

1 Disposible gratultamente (en versión inglesa) en:

(a) http://www.iupac.org/publications/pac/, (b) http://www.chem.qmul.ac.uk/iup

(a) http://www.iupac.org/publications/pac/; (b) http://www.chem.qmul.ac.uk/iupac/
 K.-H. Hellwich, R. M. Hartshorn, A. Yerin, T. Damhus, A. T. Hutton, Brief Guide

K.-H. Hellwich, R. M. Hartshorn, A. Yerin, T. Damhus, A. T. Hutton, Brief Guide to the Nomenclature of Organic Chemistry, Pure Appl. Chem., en preparación. R. C. Hioms, R. J. Boucher, R. Dulhev, K.-H. Hellwich, P. Hodge, A. D. Jenkins, R. G. Jones, J. Kahovec, G. Moad, C. K. Ober, D. W. Smith, R. F. T. Stepto, J.-P. Vairon, J. Vohlidal, Pure Appl. Chem. 84(10), 2167–2169 (2012). Principles of Chemical Nomenclature – A Guide to IUPAC Recommendations, 2011 Edition, G. J. Leigh (Ed.), Royal Society of Chemistry, Cambridge, U.K., ISBN 978-184973-007-5.

Nomenciature of Inorganic Chemistry – IUPAC Recommendations 2005, N. G. Connelly, T. Damhus, R. M. Hartshorn, A. T. Hutton (Eds.), Royal Society of Chemistry, Cambridge, U.K., ISBN 0-85404-438-8.

⁶ Nomenclature of Organic Chemistry – IUFAC Recommendations and Preferred Names 2013, H. A. Favre, W. H. Powell (Eds.), Royal Society of Chemistry,

reames 2015, H. A. Favre, W. H. Powell (Eds.), Royal Society of Chemistry,
Cambridge, U.K., ISBN 978-0-85404-182-4.

7 Compendium of Polymer Terminology and Nomenclature – IUPAC
Recommendations 2008, R. G. Jones, J. Kahovec, R. Stepto, E. S. Wilks, M. Hess, T. Kitayama, W. V. Metanomski (Eds.), Royal Society of Chemistry, Cambridge, U.K.,
ISBN 978-0-85404-491-7.

8 Schemick A. Cardinia 16.

Referencia 4, Capítulo 10.
Referencia 5, Tabla IX.

Tabla 1. Ejemplos de especies homoatómicas

Fórmula	Nombre	Fórmula	Nombre
O ₂	dioxigeno	CI-	clonuro(1-) o clonuro
Sg	octaazufre	I ₃	triyoduro(1-)
Na ⁺	sodio(1+)	0,2-	dióxido(2-) o peróxido
Fe	hierro(3+)	N ₀	trinitruro(1-) o azida

. 15	Tabla 2. Pretijos multiplicadores para especies simples y complejas				
N	Simple	Complicado	N*	Simple	Complicado
2	ă	bis	8	octa	octakis
3	tri	tris	9	попа	nonakis
4	tetra	tetrakis	10	deca	decakis
- 5	penta	pentakis	11	undeca	undecakis
6	hexa	hexakis	12	dodeca	dodecakis
7	hepta	heptakis	20	icosa	icosakis

Los compuestos binarios (los que contie nombran estequiometricamente combinando los nombres de los elementos y escribiendo, por convenio, el elemento al que se llega primero cuando se sigue la Recha de la secuencia de los elementos (Figura I) como si se tratara de un anión. Así, al nombre de este elemento formalmente 'electronegativo' se le da la terminación 'uro' y se coloca el primero en el nombre del compuesto, siguiéndole la proposición 'de' y el nombre del elemento formalmente signiendole la preposición 'electropositivo' (Tabla 3).

Figura 1. Secuencia de los elementos.

nlor de con

1 abia 3. Ejempios de compuestos binarios			
Formula	Nombre	Formula	Nombre
GaAs	arsemuro de galio	FeCl ₂	dicloruro de hierro o cloruro de hierro(II)
CO2	diéxido de carbono	FeCl ₃	tricloruro de hierro o cloruro de hierro(III)
CaF ₂	diffuoruro de calcio	H ₂ O ₂	ditaido de dihidrogeno o pertaido de hidrogeno

De nuevo, los prefijos multiplicadores (Tabla 2) se aplican cuando sea necesario, y se pueden usar nombres alternativos ¹⁰ aceptables. La estequiometria puede deducirse en algunos casos mediante los números de oxidación, o puede estar completamente implicita cuando no existe ninguna duda, como en el fluoruro de calcio.

Generalmente, las especies heteropolistómicas pueden nombrarse de manera similar usando la nomenclatura de composición, pero, a menudo, se utiliza la nomenclatura de sustitución¹¹ o la de adición (Sección 2). En este último caso, también se proporciona información sobre la manera en que los átomos están conectados. Por ejemplo, POCl₃ (o PCl₃O, nombre de composición: tricloruro

oxido de fosforo) recibe un nombre de adición en la Tabla 10. Ciertos iones tienen nombres tradicionales cortos, que se utilizan comúnmente y se aceptan todavía $(p.~ej.,~amonio,~NH_4^+;~hidróxido,~OH^-;~nitrito,~NO_2^-;~fosfato,$ PO(3-; difosfato, P2O34-).

Los compuestos inorgânicos, en general, pueden ser combinaciones de cationes, aniones y especies neutras. Por convenio, el nombre de un compuesto está formado por los nombres de las especies que lo componen: los aniones preceden a los cationes y los componentes neutros van al final (Véanse ejemplos en la

Table 4. Use de les prefijes multiplicadores en les nombres de com

Tabla 4. Coo de los pretijos munipacadores en los nombres de composicion		
Formula	Nombre	
$Ca_3(PO_4)_2$	bis(fosfato) de tricalcio	
Ca ₃ P ₂ O ₇	difosfato de dicalcio	
BaO ₂	dióxido(2-) de bario(2+) o peróxido de bario	
$MgSO_4 \cdot 7H_2O$	sulfato de magnesio heptahidrato	
CdSO ₄ -6NH ₃	sulfato de cadmio—amoniaco (1/6)	
AlK(SO ₄) ₂ -12H ₂ O	bis(sulfato) de aluminio y potasio—agua (1/12) o bis(sulfato) de aluminio y potasio dodecalidrato	
Al ₂ (SO ₄) ₃ -K ₃ SO ₄ -24H ₂ O	tris(sulfato) de dialuminio—sulfato de dipotasio— agua (1/1/24)	

¹⁰ Referencia 4, Tabla P10.

Otros materiales de interés (Guía Breve))

El número de cada entidad presente se tiene que especificar con el fin de reflejar la composición del compuesto. Con este propósito, los prefijos multiplicadores (Tabla 2) se afiaden al nombre de cada especie. Los prefijos a usar con los nombres de entidades sencillas son 'di', 'tri', 'tetra', etc., o 'bis()', 'tris()', tetrakis()', etc., para el caso de especies que ellas mismas contienen prefijos multiplicadores o localizadores. También hay que tener cuidado en las situaciones en las que un prefijo multiplicador simple puede ser malinterpretado, p. ej., tris(yoduro) tiene que usarse para 31 en lugar de triyoduro (que se usa para I_1), y bis(fosfato) en lugar de difosfato (que se usa para $P_2O_1^{+}$). Algunos ejemplos se muestran en la Tabla 4. No hay elisión de vocales (p, ej., terracua,

pentaŭxido), excepto en el caso especial de monôxido. Los nombres de los componentes neutros se separan por guiones extra largos (—) sin espacios. Los compuestos inorgânicos pueden ser, a su vez, componentes en compuestos de adición (formales) (últimos cuatro ejemplos de la Tabla 4). Las relaciones de los componentes pueden indicarse, en general, usando un descriptor estequiométrico con un parentesis después del nombre (véanse los tres últimos ejemplos de la Tabla 4). En el caso especial de los hidratos, los prefijos multiplicadores pueden ser usados con el término 'hidrato'.

COMPLEJOS V NOMENCLATURA DE ADICIÓN

La nomenclatura de adición se desarrolló para describir las estructuras de entidades de coordinación, o complejos, pero este metodo también se extiende con facilidad a otras entidades moleculares. Se considera que los complejos mononucleares consisten en un atomo central, a menudo un ion metalico, que está unido a moléculas pequeñas o iones adyacentes, que se denominan ligandos. Los nombres de los complejos se construyen (Tabla 5) añadiendo los nombres de los ligandos antes que los de los átomos centrales, utilizando los prefijos licadores pertin ientes. Las formulas se construyen affadiendo los s o abreviaturas de los ligandos después de los símbolos de los átomos centrales

Tabla 5. Generación de nombres de complejos: ligandos sencillos

Estructura a nombrar	H ₃ N NH ₃	
Atomo(s) central(es)	cobalto(III)	2 × renio
Identifique y nombre los ligandos	amoniaco → ammino agua → acua	cloruro → cloruro
Construya el nombre	cloruro de acuapenta= amminocobalto(III)	bis(tetraclorurorenato)= (Re-Re)(2-) de cesio

2.2 Atomo(s) central(es) y ligan

El primer paso consiste en identificar el(los) átomo(s) central(es) y, por tanto, los ligandos. Por convenio, los electrones implicados en el enlace entre el átomo central y un ligando se considera que pertenecen al ligando (y esto determinará su nombre).

Cada ligando se nombra como una entidad separada utilizando la nomenclatura oportuza, ⁴ generalmente de sustitución para ligandos orgánicos ^{3,4,6} y de adición para ligandos inorgánicos. Un número pequeño de moleculas comunes e iones an nombres especiales cuando se encuentran en complejos. Por ejemplo, un ligando agua se representa en el nombre completo con el término 'acua'. Un ligando amoniaco se representa por 'ammino' mientras que el monóxido de carbono unido al átomo central por el átomo de carbono se describe con el término "carbonilo" y el monóxido de nitrogeno unido por el nitrogeno se representa por 'nitrosilo". Los nombres de ligandos aniónicos que terminan en 'uro', 'ito' y 'ato' no se modifican en el nombre de adición completo del complejo. Notese que la desinencia 'uro' se utiliza también para los ligandos halogemuro y 'oxido' no se modifica. Por convenio, un solo átomo de hidrógeno coordinado se considera siempre aniónico y se representa en el nombre por el término 'hidruro', mientras que el dihidrógeno coordinado se trata general: como una entidad neutra donadora de dos electrones.

2.3 Construcción de los nombres de adición

Una vez nombrados los ligandos, puede construirse el nombre. Para ello se citan los nombres de los ligandos en orden alfabético antes del nombre del(de los) átomo(s) central(es) sin tener en cuenta las cargas de los ligandos.

Si lubiera mat de un ligando de un tipo particular unido de igual modo al atomo central, el número de esos ligandos identicos se indica mediante el prefijo multiplicador adecuado para ligandos simples o complicados (Tabla 2), sin cambiar el orden alfabético de los ligandos establecido previamente. El orde colocación de los signos de inclusión que se usa en los nombres cuando se necesita más de un signo de inclusión es: (), [()], {[()]}, {etc.

Los enlaces metal-metal se indican colocando los simbolos de los átomos centrales entre parentesis, en cursiva y conectados por un guión extra largo (--) después del nombre del complejo (sin dejar espacios). El número de carga del complejo o el número de oxidación del átomo central se añade como afijo al abre del complejo. Para los aniones que se nombran por non enclatura de adición se le da la desinencia 'ato' al nombre del átomo central, de igual modo que se usa la terminación 'uro' para los aniones momeatómicos (Sección 1). En algunos casos, por tradición, la rair latina se usa para los nombres 'ato' como en sulfato (para azufre), ferrato (para hierro), cuprato (para cobre), argentato (para plata), estannato (para estaño), aurato (para oro) y plumbato (para plomo). 12 Finalmente, las reglas de la nomenclatura de composición (Sección 1) se utilizan para combinar los nombres de adición de entidades de coordinación neutras o iónicas con los nombres de cualquier otra entidad que forma parte del

2.4 Especificación de la conectividad

Algunos ligandos se pueden unir a un átomo central por distintos átomos en diferentes circunstancias. Especificar que átomo ligante (coordinante) está unido en un complejo dado puede lograrse afiadiendo términos-s: al nombre del ligando. El termino-s: incluye la letra griega s: seguida del símbolo del elemento del átomo ligante en letra cursiva. Para ligandos más complicados el término-s: se coloca frecuentemente dentro del nombre del ligando a continuación del grupo al que se refiere. Pueden indicarse uniones idénticas multiples a un átomo central afiadiendo el número adecuado como un superindice entre los símbolos κ y el del elemento (véase la Tabla 6). Estas posibilidades se discuten con detalle en el Libro Rojo. ¹³ Si los átomos ligantes de un ligando son contiguos (es decir, están enlazados directamente), se usa en su lugar un término-η, por ejemplo en muchos compuestos organometálicos

(Sección 2.6) y en el peróxido complejo de la Tabla 6. Para ligandos que tienen la posibilidad de unirse mediante más de un modo de coordinación se requiere el uso de un término-sc. Casos típicos son el tiocianato, que puede unirse por el atomo de azufre (tiocianato-κδ) o por el so (tiocianato-κN) y el nitrito, que puede unirse por el át de nitrógeno (M-NO₃, nitrito-kN) o por un atomo de oxígeno (M-ONO, nitrito-kN). Los nombres peataammino(nitrito-kN)cobalto(2+) y pentaammino(nitrito-kN)cobalto(2+) se usan para describir los dos nitrito-complejos isómeros catiónicos. En la Tabla 6 se encuentran más ejemplos de construcción de nombres usando los términos-x para especificar la conectividad de los ligandos. Si en un complejo existe más de un átomo central, se puede usar también un término-k para indicar a que átomo central está unido el ligando (Sección 2.5).

Tabla 6 Generación de nombres de compleios: ligandos complicados

TABLE O. CO	eneración de nombres de comp	tejos. agados compacados
Estructura a nombrar		
Atomo central	$cobalto({\rm III}) \to cobaltato({\rm III})$	platino(II)
Identifique y nombre los ligandos	2,2',2",2"-(etano-1,2-diil= dinitrilo)tetraacetato → 2,2',2",2"-(etano-1,2-diil= dinitrilo)tetraacetato	cloruro → cloruro trifenilfosfamo
Especifique los átomos ligantes	2,2',2",2"-(etano-1,2-diil= dinitrilo-κ²N)tetraacetato-κ⁴O	no se necesita para cloruro trifenilfosfano-xP
Construya el nombre	[2,2',2",2"'-(etano-1,2-diil= dinitrilo-x ² N)tetraacetato- x ⁴ O]cobaltato(III) de bario	diclorurobis(trifenil= fosfano-κP)platino(II)
Estructura a nombrar	Hybrand Bala	
Atomo central	cobalto(III)	molibdeno(III)
Identifique y nombre los ligandos	etano-1,2-diamina peròxido → peròxido	cloruro → cloruro 1,4,8,12- tetratiaciclopentadecano
Especifique los átomos ligantes	etano-1,2-diamina-κ²N η²-peròxido	no se necesita para cloruro 1,4,8,12-tetratiaciclo= pentadecano-k ³ S ¹ ,S ⁴ ,S ⁸
Constraya el nombre	bis(etano-1,2-diamina-κ²N)= (η²-peróxido)cobalto(III)	tricloruro(1,4,8,12- tetratiaciclopentadecano- $\kappa^3 S^1, S^4, S^6$)molibdeno(III)

Los ligandos puente son aquellos que están unidos a más de un átomo central. Se diferencian en los nombres por la adición del prefijo 'µ' (letra griega mu) con el prefijo y el nombre del ligando puente separados uno del otro y del resto del nombre por guiones. Con esto es suficiente si el ligando es monoatómico, pero si el ligando es más complicado puede ser necesario especificar que átomo ligante del ligando está unido a que átomo central. Ciertamente, este es el caso en el que los átomos ligantes sean de tipo diferente y donde se pueden usar los terminos-y con esta finalidad.

¹² Referencia 5, Tabla X. 13 Referencia 5, Sección IR-9.2.4.

Otros materiales de interés (Guía Breve))

cloruroaluminio(III)] $[Cl_3Al(\mu-Cl)_2AlCl_2]$

oxidosulfato)(2-) [O₃S(µ-O₂)SO₃]³⁻

2.6 Compuestros organometálicos Los compuestos organometálicos contienen al menos un enlace entre un atomo metalico y un atomo de carbono. Se nombran como compuestos de coordinación mediante el sistema de nomenclatura de adición (véase más

El nombre de un ligando orgánico que se une por un átomo de carbono puede derivarse al tratar el ligando como un anión o como un grupo sustituyente neutro. Ast, el compuesto [Ti(CH₂CH₂CH₃CH₃)] puede llamarse tricloruro(propan-1-uro)titanio o tricloruro(propil)titanio. De igual modo, para el ligando -CH3 puede usarse 'metamiro' o 'metil'.

Si un ligando orgánico forma dos o tres enlaces sencillos metal-carbono (con uno o más centros metálicos), el ligando puede considerarse como un di- o tri-anión, en cuyo caso se usan las terminaciones "diuro"o "triuro" sin eliminar la "o" terminal del hidrocarburo progenitor. De nuevo, se encuentran muy frecuentemente los nombres que se derivan de considerar este tipo de ligandos como grupos sustituyentes con los sufijos 'diil'.

Ast, el ligando bidentado -CH₂CH₂CH₃- se llamaria propano-1,3-diiuro (o propano-1,3-diil) si quelata a un centro metalico y µ-propano-1,3-diiuro (o

propano-1,3-diii) si queiata a un centro metalico y μ-propano-1,3-diiiro (ο μ-propano-1,3-dii) si puentea dos átomos metalicos. Los compuestos organometalicos que contienen un enlace múltiple metalcarbono reciben nombres de prefijos sustituyentes derivados de los hidruros progenitores que finalizan con el sufijo 'ilideno' para un enlace doble metalcarbono y con 'ilidino' para un enlace triple. Estos sufijos sustituyen a la terminación 'ano' del hidruro progenitor o, más generalmente, se afladen al nombre del hidruro padre con inserción de un localizador y elisión de la 'o' terminal si existe. Así, la entidad CH₂CH₂CH= como ligando se llama propilideno y $(CH_3)_2C=$ se llama propan-2-liideno. La metodología 'diuro'/triuro' descrita anteriormente se puede usar también en esta situación. Sin embargo, los términos 'carbeno' y 'carbino' no se usan en nomenclatura sistemática.

dicloruro(fenilmetilideno)bis(triciclohexilfosfano-x/P)rutenio, dicloruro(fenilmetanodiuro)bis(triciclohexilfosfano-κ.P)rutenio, (bencilideno)diclorurobis/triciclohexilfosfano-x/P)rutenio

La naturaleza especial del enlace de hidrocarburos insaturados con metales de modo "side on", a través de sus electrones- π , requiere el convenio eta (η). de modo inde on , à traves de sus electrones-π, requiere et convenio eta (η). En esta nomenclatura 'hapto' el número de átomos contiguos del ligando coordinados al metal (la hapticidad del ligando) se indica por un superindice sobre el símbolo eta, por ejemplo, η³ ('eta tres' o 'trihapto'). El término-η se añade como un prefijo al nombre del ligando o a la porción del nombre del ligando más adecuada para indicar la conectividad, con localizadores si fuese

(η⁶-benceno)[(1,2,5,6-η)-cicloocta-1,3,5,7-tetraeno]cobalto(1+)

tris(η³-prop-2-en-1-uro)cromo. tris(η³-prop-2-en-1-il)cromo, o tris(η³-alil)cromo

Una lista de ligandos insaturados con enlaces-π neutros y aniônicos puede encontrarse en el Libro Rojo. 14

encontrarse en el Litro Kojo. "

Notese que el ligando ubicuo η^5 -C₃H₅, estrictamente η^5 -ciclopenta2,4-disa-1-uro, se llama también aceptablemente η^5 -ciclopentadienuro o η^5 -ciclopentadienilo. Si el grupo ciclopenta-2,4-disa-1-uro se coordina por un solo atomo de carbono a través de un enlace σ se aflade un termino- κ para indicar explicitamente ese tipo de enlace. Sin embargo, el símbolo η debe usarse ya que el convenio eta se aplica solamente al enlace de átomos contiguos en un ligando.

 $dicarbonil(\eta^4\text{-}ciclopentadienuro)(ciclopenta-2,4\text{-}dien-1\text{-}uro\text{-}\kappa C^4)hierro$ dicarbonil(η³-ciclopentadienil)(ciclopenta-2,4-dien-1-il-wC¹)hierro

Las moléculas discretas que contienen dos ligandos η^5 -ciclopentadienuro paralelos en una estructura 'sandwich' en torno a un metal de transición, como en $bis(\eta^2-ciclopentadienuro)hierro, [Fe(\eta^2-C_1H_3)_2]$, se llaman guardicamente metallocemos y puedan recibir nombres 'ocemo'; en este caso farroceno. Estos nombres 'ocemo' puedan usarse de la misma manera que se usan los nombres de hidruros progenitores en la nomenclatura de sustitución, cuyos nombres de grupos sustituyentes toman las formas de 'ocenil', 'ocenodiil', 'ocenotriil' (con inserción de los localizadores pertinentes).

Por comvanio, los compuestos 'organoelemento' de los elementos de los grupos principales se nombran mediante la nomenclatura de sustitución si derivan de los grupos 13-16, pero con la nomenclatura de adición si derivan de los grupos 1 y 2. En algunos casos se usa la nomenclatura de composición si se va a transmitir poca información estructural. El Libro Rojo suministra más detalles. 15

uestos de coordinación 2.7 Formulas de los cos

Las formulas en linea de las entidades de coordinación se escriben entre corchetes para especificar la composición de la entidad. El proceso global se muestra en la Tabla 7. El símbolo del átomo central se coloca en primer lugar y le signen los símbolos o abreviaturas de los ligandos (en orden alfabético según el modo que se presenten en la formula). Cuando sea posible, el átomo que se coordina (ligante) debe colocarse más próximo al atomo central para proporcionar más información sobre la estructura del complejo. Por este mismo motivo, los ligandos puente deben colocarse entre los símbolos de los átomos centrales cuando sea posible (véanse ejemplos en la Sección 2.5). Generalmente, las formulas y abreviat los ligandos se colocan entre signos de inclusión (salvo que el ligando contenga un solo átomo) y debe recordarse que los corchetes se reservan para definir la esfera de coordinación. La presencia de ligandos múltiples se indica con un submdice a la derecha y a continuación del signo de inclusión o del símbolo del ligando

Tabla 7. Generación de formulas lineales para complejos

Estructura	H ₂ N NH ₃ SCI	204
Atomo(s) central(es)	Co	$2 \times Re$
Ligandos	NH ₃ , OH ₂	Cl
Ensamble la fórmula	$\hbox{\tt [Co(NH_3)_5(OH_3)]Cl_3}$	Cs2[Cl,ReReCl,]
Estructura		E E
Atomo(s) central(es)	Co	Pt
Ligandos abreviados	2,2',2",2"-(etano- 1,2-diil)dinitrilo= tetraacetato → edta	Cl trifenilfosfano → PPh ₃
Ensamble la fórmula	Ba[Co(edta)]2	[PtCl ₂ (PPh ₃) ₂]

¹⁴ Referencia 5, Tabla IR-10.4.

¹⁵ Referencia 5, Sección IR-10.3.

ESTRUCTURAL

4

Otros materiales de interés (Guía Breve))

2.8 Oxoácidos inorgánicos y compuestos relacionados

Los oxoácidos inorgánicos y los aniones que se forman al eliminar sus hidrones (H') àcidos, tienen nombres tradicionales que son muy conocidos y pueden encontrarse en muchos libros de texto: àcido sulfarico, sulfato; àcido nttrico nitrato: acido nitroso nitrito: acido fosforico fosfato: acido arsanico arsenato; ácido arsenioso, arsenito; ácido silícico, silicato; etc. Estos nombres se retienen en la nomenclatura de la IUPAC por dos razones, en primer lugar, porque son los nombres usados invariablemente en la práctica y, en segui higar, porque juegan un papel supecial en la nomenclatura organica cuando se necesitam nombres para sus derivados organicos. No obstante, todos los oxoácidos y sus derivados pueden considerarse como entidades de coordinación y nombrarse sistemáticamente mediante la nomenclatura de adición (Tabla 8). 16

Tabla 6. Ljempios de ofoscidos morganicos y derivados		
Formula	Nombre tradicional u organico	Nombre de adición
H ₂ SO ₄ o [S(O) ₂ (OH) ₂]	ácido sulfúrico	dihidroxidodioxidoazufre
(CH ₃) ₂ SO ₄ o [S(O) ₂ (OMo) ₂]	sulfato de dimetilo	dimetoxidodioxidoazufre o dimetanolatodioxidoazufre
H ₂ PHO ₃ o [P(H)(O)(OH) ₂]	acido fosfonico	dihidroxidohidrurooxido= fosforo
PhP(O)(OH) ₂	àcido fenilfosfònico	(fenil)dihidroxidooxido= fósforo

ino 'acido fosforoso' se ha utilizado en la bibliografia para las especies llamadas acido fosfónico en la Tabla 8 y para aquellas con la formula P(OH)₁, trihidroxidofósforo. En el segundo sentido se utiliza en la nomenclatura organica

Los nombres tradicionales de los oxoácidos pueden modificarse conforme a reglas establecidas para nombrar derivados formados por reemplazo funcional. Así, tio denota reemplazamiento de =O por =S; los prefijos 'fluoro', 'cloro', etc. y los infijos 'fluoridico', 'cloridico', etc., denotan reemplazo de -OH por -F, -Cl, etc.; 'peroxi'/'peroxo' denota reemplazo de -O-por -OO-y ast sucesivamente (Tabla 9).

Si todos los grupos hidroxi de un oxoâcido son reemplazados, el compuesto

ya no es un ácido y no se nombra como tal sino que tendrá un nombre de clare funcional, ¹⁶ como por ejemplo, un halogenuro de acido o una amida. Dichos tipos de compuestos pueden nombrarse de nuevo sistemáticamente mediante la nomenclatura de adición (Tabla 10).

meniante la nombreactatura de aduction (1 aou a 10).

Una construcción especial se usa en los nombres de hidrogeno, que permite la indicación de los hidrones unidos a un anión sin especificar exactamente donde. En dichos nombres, la palabra "hidrogeno" (sin tilde) se coloca al principio del nombre con un prefijo multiplicador (si fuese pertinente) y sin espacio entre ella y el resto del nombre, el cual se encierra entre parén Por ejemplo, dihidrogeno(difosfato)(2-) denota H,P₂O⁺, un ion difosfato al que se le han afiadido dos hidrones en posiciones desconocidas o al memos no

especificadas. Los nombres comunes de oxoácidos parcialmente deshidronados, tales como hidrogenofosfato, HPO4, y dihidrogenofosfato, H3PO4, pueden considerarse casos especiales de dichos nombres de hidrogeno. En estos nombres simplificados, se excluyen el número de carga y los parentesis. De muevo, estos aniones particulares pueden nombrarse sistemáticamente mediante la nomenclatura de adición. La palabra "hidrogeno" se coloca separada al

Tabla 9 Fiemplos de derivados de oxoácidos inorgánicos y a

formados por reemplazo funcional			
Formula	Nombre que indica el reemplazo funcional	Nombre de adición	
H ₃ PS ₄ o [P(S)(SH) ₃]	acido tetratiofosfórico o acido fosforotetratioico	tris(sulfanuro)sulfuro= fósforo	
H ₃ PFO ₃ o [PF(O)(OH) ₂]	acido fluorofosférico o acido fosforofluoridico	fluorurodihidroxido= oxidofôsforo	
S ₂ O ₃ ²⁻ • [S(O) ₃ (S)] ²⁻	tiosulfato o sulfurotioato	trioxidosulfuro= sulfato(2-)	
[O ₃ S(μ-O ₂)SO ₃] ²	peroxidisulfato	véase la Sección 2.5	

Tabla 10. Ejemplos de clases de nombres funcionales y sus

correspondientes nombres de salcion			
Formula	Nombre de clase functional	Nombre de adición	
PCl ₉ O	tricloruro de fosforilo	triclorurooxidofósforo	
SCl ₂ O ₂	dicloruro de sulfurilo	diclorurodioxidoazufre	
S(NH ₂) ₂ O ₂	diamida sulftrica	diamidodioxidoazufre	

¹⁶ Referencia 5, Capítulo IR-8.

formar los nombres análogos en la nomenciatura orgánica; por ejemplo, hidrogeno sulfato de dodecilo, $C_{11}H_{22}OS(O)_{2}OH$. Esta diferencia entre los dos sistemas tiene como consecuencia que el ion HCO3-, que contiene carbono, pueda llamarse igual de correctamente 'hidrogeno carbonato' o 'hidrogenocarbonato' (pero nunca bicarbonato).

ESTEREODESCRIPTORES

La geometria aproximada alrededor del átomo central se describe mediante un símbolo del poliedro colocado al principio del nombre. El símbolo se construye con letras mayúsculas cursivas para la geometria y un número que indica el número de coordinación. Símbolos de poliedros que se usan frecuentemente son: OC-6 (octasdro), SP4 (plano-cuadrado), T-4 (tetraedro), SPY-5 (piramide cuadrada) y TBPY-5 (bipiramide

T-4 (tetraedro), SPY-3 (puramide cuatrata) y 10FT-3 (upuramide trigonal). Listas más completas pueden obtenerse en la referencia. Tas posiciones relativas de los grupos ligantes en torno a un atomo central se describen mediante un indice de configuración, que se determina de un modo particular para cada tipo de geometria.

18 basado en las 18 de prioridades de Cahn-ingold-Prelog de los grupos ligantes: 1928 y puede cambiar si varian los ligandos aunque la geometria permanenca invariable. También puede describirse la configuración absoluta. ste, los indices de configuración se utilizan solamente cuando existe más de una posibilidad y se tiene que identificar un estereoisômero en particular. Los estereodescriptores completos de los complejos planoirados de platino que se muestran a continuación son (SP-4-2) y (SP-4-1) para los isómeros cis y trans, respectivamente. Alternativamente puede usarse una serie de estereodescriptores tradicionales en situacione particulares. Así, los isómeros posibles para un centro plano-cuadrado coordinado por dos grupos ligantes de un tipo y dos de otro se describen como cis (si los ligandos idénticos están próximos uno del otro) o trans (si están opuestos uno al otro).

cts-diamminodicloruroplatino(II) traves-diamminodicloruroplatino(II)

Los centros octaédricos con cuatro ligandos de un tipo y dos de otro también pueden describirse como cis- (si los dos ligandos idénticos están coordinados próximos uno del otro) o trans- (si están opuestos). Los centros octaédricos con tres ligandos del mismo tipo pueden describirse como fac- (facial) si los tres ligandos de un tipo particular se localizan en los ângulos de una cara del octaedro o mer- (meridional) si no lo están (se encuentran en un plano que contiene dos aristas del octaedro).

RESUMEN

Este documento proporciona un esquema de las reglas de nomenclatura esenciales para elaborar nombres y fórmulas de compuestos inorgânicos, ación y organometálicos. El documento complementario de de coordii sclatura de <u>outmica orea</u> nica² también será de utilidad al lector.

Los nombres y las formulas sólo cumplen la mitad de su papel cuando se crean y se usan para describir o identificar compuestos, por ejemplo, en publicaciones. Conseguir que alcancen plenamente su papel requiere que el lector de un nombre o formula sea capaz de interpretaria con éxito, por ejemplo, generando un diagrama estructural. El presente documento también está destinado a ayudar en la interpretación de nombres y formulas.

Finalmente, queremos advertir que la IUPAC ha dado recomendaciones sobre la representación gráfica de estructuras químicas y sus configuraciones estereoquímicas. 21,22

Referencia 4, Tabla P5; Referencia 5, Tablas IR-9.2 e IR-9.3.

¹⁸ Referencia 5, Sección IR-9.3.3.

¹⁹ R. S. Cahn, C. Ingold, V. Prelog, *Angew. Chem.* 78, 413–447 (1966), *Angew.*

R. S. Cahn, C. Ingold, V. Prelog, Angew. Chem. 78, 413–447 (1966), Angew. Chem., Int. Ed. Engl., 5, 385–415 y 511 (1966).
 V. Prelog, G. Helmchen, Angew. Chem. 94, 614–631 (1982), Angew. Chem., Int. Ed. Engl., 21, 567–583 (1982).
 J. Brecher, K. N. Degtyarenko, H. Gottlieb, R. M. Hartshorn, G. P. Moss, P. Murray-Rust, J. Nyitrai, W. Powell, A. Smith, S. Stein, K. Taylor, W. Town, A. Williams, A. Yerin, Pure Appl. Chem., 78(10), 1897–1970 (2006).
 J. Brecher, K. N. Degtyarenko, H. Gottlieb, R. M. Hartshorn, K.-H. Hellwich, J. Kahovec, G. P. Moss, A. McNaught, J. Nyitrai, W. Powell, A. Smith, K. Taylor, W. Town, A. Williams, A. Yerin, Pure Appl. Chem., 80(2), 277–410 (2008).

QeI

nomenclatura

Carlos Pico, Inmaculada Álvarez Serrano, María Luisa López y María Luisa Veiga Departamento de Química Inorgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid

Nomenclatura química inorgánica básica

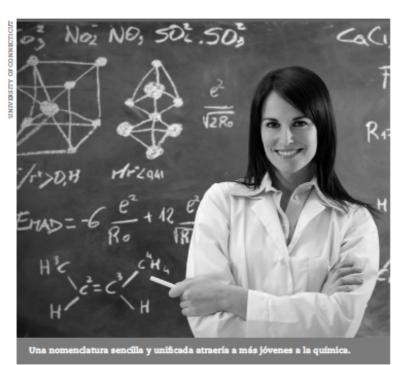
María Ángeles Arillo y Patricia Martín Departamento de Didáctica de las Ciencias Experimentales, Facultad de Educación, Universidad Complutense de Madrid

Por su interés didáctico y formativo, QeI publica este trabajo realizado por expertos en química y educación de la Universidad Complutense de Madrid, que presentan una metodología sencilla para la nomenclatura inorgánica. Esta alternativa simplifica el aprendizaje de la materia y se propone fomentar su uso desde las fases iniciales de estudio. Los autores sugieren que la Real Sociedad Española de Química y la Asociación Nacional de Químicos de España deberían estimular la adopción de una nomenclatura común para la enseñanza secundaria en España.

a nomenclatura no es un tema de estudio ni de debate entre los químicos, que viven y trabajan bastante ajenos a ella y se limitan a utilizar los términos de uso común en su área profesional. En cambio, la nomenclatura llega a ser un contenido tedioso desde las fases iniciales de estudio de la asignatura y, probablemente, su enrevesada presentación en el aula influye en que muchos alumnos no sientan precisamente entusiasmo hacia la propia química.

Por lo que respecta a la nomenclatura inorgánica, las reglas que se aplican en su presentación docente son más bien enigmáticas -- comenzando habitualmente por las valencias- y aún más lo son los complicados procedimientos para descifrar la composición de los oxoácidos. Todo esto se remata con rebuscados ejemplos para ilustrar cómo se nombran y formulan los compuestos. En este sentido, un problema añadido es que se citan en un plano de igualdad especies exóticas, e incluso inexistentes, con otras que tienen un interés objetivamente muy superior porque van a ser estudiadas con mayor detenimiento en el desarrollo de la asignatura. Visto lo anterior con cierta perspectiva, se puede concluir que se parte de bases poco comprensibles, el método es inadecuado y se llega a resultados desalentadores por el mucho tiempo y esfuerzo desperdiciados.

Ante todo, conviene precisar el propio término de nomenclatura, definido por la Real Academia Española como "el conjunto de las voces técnicas propias de una facultad", entendiéndose facultad como "ciencia o arte" --según la tercera acepción de la 22ª edición del Diccionario de la lengua española- y voz como "palabra o vocablo". Una observación complementaria es que este término debe incluir formular — representar mediante símbolos químicos la composición de una sustancia o de las sustancias que intervienen en una reacción" - y nombrar - "decir el nombre de alguien o algo"---. Parece necesaria esta precisión porque, debido a una extendida costumbre, suelen diferenciarse ambos conceptos en epígrafes del tipo "ejercicios de nomenclatura y formulación", cuando en realidad ambos forman parte del mismo objeto indisociable de nombrar y formular las especies químicas. Así lo entienden implícitamente la IUPAC (Unión Internacional de Química Pura y Aplicada, en sus siglas en inglés) y sus comisiones especializadas en esta materia. La nomenclatura, pues, debe ser un método de denominación y representación simbólica de las especies químicas en estudio, sin otras pretensiones


—en un nivel básico— que la de informar de su composición.

La nomenclatura química puede asimilarse a un lenguaje. De la misma manera que las palabras forman frases, los nombres de los elementos se asocian para identificar las especies químicas, empleando unas normas de sintaxis. La sintaxis en la formulación incluye el uso de símbolos de elementos, unidos a números que se escriben como subíndices o superíndices y que van acompañados de signos de carga eléctrica.

Parece necesario dominar la nomenclatura, presentándola de manera paulatina e integrada en el contexto de la asignatura; de lo contrario, se reduce a un conjunto de "reglas de ortografía", más o menos pintorescas, que el estudiante debe aplicar para escribir y leer un "idioma" cuyo significado todavía desconoce. Esto se hace de forma más ordenada en la nomenclatura orgánica introduciendo progresivamente las funciones, pero la presentación de la inorgánica es bastante más caótica. Para demostrarlo bastaría revisar las propuestas de los libros de texto, apuntes o páginas web que tratan del tema. Curiosamente, ese caos metodológico está muy generalizado entre los autores, con independencia de su país de origen. La presente propuesta desarro-

Química e Industria [QeI ■ 34] N.º 609 abril-junio 2014

lla un método sistemático que no presupone otros conocimientos previos que los símbolos de los elementos y su posición en la tabla periódica (en lo sucesivo, TP).

Los cientos de miles de químicos de todo el mundo necesitan criterios precisos para formular v nombrar los elementos v compuestos con los que trabajan, así como para prever muchas situaciones que se les plantearán hoy o en un futuro. Pero en este mismo mundo hay también decenas de millones de alumnos de Química que necesitan unas reglas claras y sencillas para entender y aplicar esos criterios. La IUPAC ha propuesto una "gramática" para quienes ya conocen ese idioma -los químicos- que quizás carece de la unidad metodológica que hubiera sido deseable, pero no es este el momento de discutirlo y trataremos de aplicar sus modalidades más sencillas:

- Como referencia metodológica previa, citemos el concepto de nomenciatura propuesto en 1782 por Louis-Bernard Guyton de Morveau: "Método constante de denominación que ayude a la inteligencia y alivie la memoria".
- Conviene emplear la máxima uniformidad de criterios de acuerdo con las normas de la IUPAC, aplicando reglas sistemáticas que proporcionen el nombre y la fórmula a una sustancia dada.

3. Para lograr lo anterior, entre las diversas alternativas que ofrece la IUPAC en diferentes contextos seleccionaremos aquella que permita alcanzar mejor los fines del punto 1, respetando lo indicado en el 2.

1. Conceptos básicos

Como conocimientos básicos que son inherentes a la nomenclatura química, recordemos los siguientes.

■ 1.1. Átomos

En el estudio de la química debemos partir de los átomos, dotados de masa y eléctricamente neutros. A efectos de nomenclatura, basta con saber que los átomos constan de tres clases de partículas subatómicas: electrones, que son la unidad física de carga eléctrica negativa; protones, con igual carga que los anteriores pero de signo positivo, y neutrones, sin carga. Estas partículas tienen masa, siendo muy parecida las de los protones y neutrones y considerablemente mayor que la de los electrones. Los átomos, al ser eléctricamente neutros, deben tener igual número de protones y electrones.

Los átomos estables en la naturaleza albergan entre 1 y 92 protones. Unos 80 átomos suscitan mayor interés químico. El número de protones de un átomo dado —número atómico o Z- es precisamente el criterio que se adopta para ordenarlos en la TP. En cuanto a los neutrones, basta con saber que influyen sobre la masa atómica, que es la suma de las masas de los protones y neutrones; el número total de estos nucleones se denomina número de masa (A). Por consiguiente, cada átomo queda individualizado por su número atómico (Z) v adopta la siguiente representación: $^{\Lambda}_{Z}E$, donde E es el símbolo químico del elemento. Por ejemplo: 11H (protio), 21H (deuterio) o 31H (tritio). Excepcionalmente, para los dos isótopos más pesados del hidrógeno, el deuterio y el tritio, también se pueden utilizar las iniciales de sus nombres, DyT, respectivamente.

■1.2. Elementos y compuestos

La materia está constituida por átomos pero, con la salvedad de los gases nobles —grupo 18—, los átomos se encuentran asociados mediante fuerzas de enlace, dando lugar a las sustancias o especies químicas. Cada sustancia se distingue de las demás por su composición y por su estructura: la composición indica el número y naturaleza de los átomos que integran una especie, mientras que la estructura expresa la distribución de dichos átomos en el espacio. Por lo que respecta a la composición, cabe distinguir entre sustancias formadas por átomos de igual o de diferente número atómico.

Un elemento es una sustancia formada por una misma clase de átomos, esto es, con igual número de protones, y recibe el mismo nombre y símbolo que dichos átomos. Por otra parte, los elementos pueden estar constituidos por un conjunto definido de átomos -moléculas- o por un número indeterminado de estos en estado sólido. A partir del bismuto (Z = 83), todos los elementos son radiactivos y, salvo el uranio y en menor medida el torio, no tienen interés en química; en particular, los transuránidos (Z > 92) podrían considerarse más bien "elementos físicos" en vez de "químicos", pues no es previsible que ningún químico llegue a manejarlos.

Los compuestos están formados por dos o más átomos diferentes, también asociados por fuerzas de enlace. Cada compuesto se caracteriza por una relación constante de elementos constituyentes — es decir, por una estequiometría definida— y, en el caso de formar moléculas, por contener además un número determinado e invariable de átomos. Los elementos naturales han dado lugar hasta ahora a varios millones de compuestos. Una gran mayoría son orgánicos, lo que sig-

qei

nomenclatura

 nifica que siempre encierran átomos de carbono en sus moléculas; los formados por los elementos restantes —algunos de los cuales también contienen carbono-son los compuestos inorgánicos.

■ 1.3. Masa atómica y masa molar

La masa es una magnitud física fundamental que es preciso utilizar para conocer la cantidad de materia que contiene un sistema. La masa de los elementos se establece mediante dos conceptos de importancia capital en química:

- La masa atómica (m_a), que significa literalmente la masa de un átomo, reflejada en kilogramos (kg).
- 2. La masa molar (M), que representa la masa de un mol de sustancia, indicada en kg mol-1. El concepto de masa molar se aplica tanto a especies elementales como a compuestos; en ambos casos es la medida de la masa contenida en un mol de la especie química considerada.

Las masas de los átomos, resultado de la suma de las masas de sus nucleones, son extremadamente pequeñas. En un proceso químico real hay que manejar cantidades enormes de átomos de diferentes elementos, siendo el mol la unidad de la magnitud denominada cantidad de sustancia de un sistema. Las masas atómicas de todos los elementos aparecen indicadas en la TP y pueden referirse directamente a la masa en gramos (g) de un mol de átomos; esto es consecuencia de la definición de mol, por la cual un mol de átomos de 12C -o carbono-12— tiene una masa exacta de 12 g. Así, un mol de átomos de hidrógeno tiene una masa de 1,008 g; uno de hierro, 55,845 g, y así sucesivamente. Es decir, las masas molares de los citados átomos son 1,008 g mol-1 y 55,845 g mol-1, respectivamente.

Cuando se trate de especies formadas por varios átomos, habrá que considerar la masa de la especie formulada en cada caso. Al ser la masa una magnitud aditiva, la masa de un conjunto de átomos será igual a la suma de las masas de todos sus componentes. Por ejemplo, para la molécula H2 se tomará el doble de la masa atómica del hidrógeno (M = 2,016 g mol-1); para el compuesto Fe₂(SO₄)₃ se sumarán las masas de dos átomos de hierro, tres de azufre y doce de oxígeno (M = 399,86 g mol-1), etc.

■ 1.4. Tabla periódica de los elementos La TP es un logro sistematizador esencial para comprender las propiedades de los

elementos. Una persona culta -y, por supuesto, un estudiante de esta materiadeberían conocer el símbolo y el nombre de los elementos importantes. De manera resumida, los conceptos destacables al respecto serían:

a) Se postula el criterio de secuenciación de los elementos por orden creciente de número atómico, que, con pocas excepciones, coincide aproximadamente con la variación creciente de su masa atómica.

b) Se establece la denominación de grupos para hablar de las columnas de la TP v de periodos para aludir a las filas. Los grupos se numeran de izquierda a derecha desde el 1 hasta el 18 —siendo absolutamente innecesario hacer referencia a la antigua numeración de los grupos como IA, IB, IIA,

c) Se presenta la distinción cualitativa entre metales y no metales. Los primeros presentan ciertas propiedades comunes de las que carecen los segundos. Debería evitarse la denominación antigua de metaloides prefiriéndose la de semimetales para algunos elementos fronterizos entre unos y otros (B, Ge, Sb, Te...).

■ 1.5. Cationes y aniones

Al igual que los átomos son eléctricamente neutros, también lo son las sustancias químicas. Pero los átomos -tanto aislados como cuando forman parte de una sustancia- pueden ganar o ceder electrones, acción que conlleva una carga eléctrica

Los elementos metálicos son electropositivos, lo que significa que sus átomos tienen tendencia a perder electrones formando cationes, es decir, átomos cargados positivamente: Li+, Na+, Mg2+, Ca2+, Cr3+, etc. El valor de dichas cargas eléctricas se denomina número de carga. En los iones monoatómicos, dicho valor se llama estado de oxidación del elemento, escribiéndose como litio(1+), magnesio(2+), etc.1, de forma que se une el nombre al paréntesis, sin dejar espacio entre ellos.

Los elementos más electronegativos los no metales, que se sitúan en la parte superior derecha de la TP, excluyendo los del grupo 18-, cuando captan electrones, pueden dar lugar a iones negativos, llamados aniones. Véanse los aniones F., O2- y N3-, donde los números de carga o estados de oxidación de tales elementos son los indicados.

Por extensión, también son cationes o aniones las especies poliatómicas cargadas eléctricamente.

Nomenclatura de elementos

Las fórmulas de los elementos se escriben con el símbolo correspondiente, que, a su vez, va acompañado de un subíndice numérico en los moleculares para especificar el número de átomos que forman la especie. Por ejemplo: Fe, W, Si, H₂, N₂, O₃, P₄, S₈. A la hora de nombrarlos se indica el valor del subíndice mediante un prefijo de origen griego-di. tri. tetra, penta, hexa ... -.. Así, diremos hierro, wolframio, silicio, dihidrógeno, trioxígeno, tetrafósforo u octaazufre. No será necesario utilizar ningún prefijo si se sobreentiende la composición de la especie —como el nitrógeno molecular-o si puede tratarse de una mezcla de alótropos -caso del azufre ordinario, que se nombraría como tal y se formularía escribiendo S-.

Nomenclatura de compuestos

La unión entre átomos es consecuencia de interacciones entre cargas eléctricas: las positivas de los núcleos y las negativas de los electrones. Sobre estas bases se desarrollan las teorías del enlace químico para explicar la naturaleza y estequiometría de los compuestos formados.

Comenzaremos por las especies iónicas binarias y extenderemos su nomenclatura a otros sistemas de naturaleza muy diferente moleculares, covalentes y metálicos—, a los que se aplican los mismos criterios.

■3.1. Compuestos iónicos binarios

Los sólidos iónicos están constituidos por un número indefinido de iones en la proporción necesaria para compensar sus cargas y, tanto la fórmula como el nombre del compuesto, representan la proporción de los iones presentes. Al combinarse elementos electropositivos y electronegativos

¹ Los "números de oxidación", en cambio, se indican mediante números romanos, sin signo cuando son positivos o precedidos del signo menos (-) si son negativos; el Gold Book o Libro de oro de la IUPAC remite su uso a los átomos centrales de una entidad de coordinación y desaconseja emplear el término números de Stock. No obstante, con un criterio bastante impreciso, también se

recomienda utilizar los números romanos en otros compuestos que tienen poco en común con los de coordinación, como en los óxidos mixtos del tipo Fe^{II}Fe^{III}2O4. Literalmente se dice que "the charge number designates ionic charge, and the oxidation number, designates oxidation state", utilizando distintos números -- romanos y arábigos-, lo cual resulta ciertamente complicado.

Química e Industria [QeI ■ 36] N.º 609 abril-junio 2014

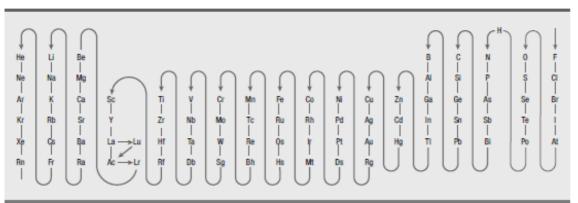


Figura 1. Secuencia de elementos para la nomenclatura

resultan compuestos como los siguientes: NaF, CaF₂, Na₂O, CaO, Na₂S, CaS...

Cuando se escribe la fórmula de un compuesto iónico, el símbolo del catión se sitúa en primer lugar y va seguido del símbolo del anión; la proporción de iones se denota con el subíndice apropiado, utilizando los números enteros más sencillos. La secuencia de la escritura de los símbolos de los elementos en cualquier compuesto—sea o no iónico— es la indicada en la figura 1.

Las combinaciones con el oxígeno se denominan genéricamente óxidos y los compuestos son, simplemente, los óxidos del metal²; es el caso del óxido de sodio o del óxido de calcio. El resto de aniones se nombran terminando en -uro la raíz del nombre del elemento correspondiente —bien la raíz castellana o bien la de su nombre latino original—: fluoruro, cloruro, sulfuro, etc. Para nombrar los compuestos formados por estos, solo queda añadir el nombre del metal: fluoruro de sodio, sulfum de calcio...

Extendiendo lo anterior a cualquier otro catión se tendría, por ejemplo: Cr₂O₃ o trióxido de dicromo; dicloruro de hierro o FeCl₂, óxido de diplata o Ag₂O —no sería necesario especificarlo como *monóxido*—. Añadamos que, en un nivel básico de enseñanza, no habría ninguna objeción seria a que se especificara la proporción de cada elemento en el compuesto, diciendo: difluoruro de calcio, óxido de disodio, trióxido de dialuminio...

Recapitulando lo dicho en este apartado y ampliando algunas de las ideas expuestas, podemos resumir:

I. Los compuestos iónicos están formados por cationes y aniones que se ordenan en el espacio, dando lugar a redes cristalinas. Todas las sales —haluros y oxosales y numerosos óxidos, sulfuros... de metales son compuestos iónicos.

II. El conjunto ha de ser eléctricamente neutro, para lo cual existirá el mismo número de cargas positivas que negativas. Por ejemplo, en el Fe₃O₄ o tetraóxido de trihiero habrá de promedio tres cationes Fe³⁺ por cada cuatro aniones O²⁻, y así sucesivamente.

III. Como el número de iones en la red cristalina es indefinido —depende de la cantidad de muestra que se tome—, la fórmula del compuesto representa simplemente la proporción en que se encuentran; para ello basta con escribir los subíndices enteros más sencillos.

IV. Cuando se hace referencia a la carga de los iones, esta se indica escribiendo el signo correspondiente como superíndice situado a la derecha, de forma que el número siempre preceda al signo, omitiéndose el 1: F-, O²-, Na+, Cr³+, etc. Téngase en cuenta que no deben invertirse (O⁻², Fe+²) ni tampoco acumularse los signos (S⁻, Al+++).

■ 3.2. Otros compuestos binarios

Lo anterior sirve de base para nombrar cualquier compuesto inorgánico binario, con independencia de su carácter más o menos iónico. En general, cuando esté presente el oxígeno, diremos óxido de..., excepto si está unido a algún halógeno. En las demás situaciones, serán derivados del elemento más electronegativo, el cual terminará su nombre en el sufijo—uro. En todo caso, se incluirán los prefijos numéricos que correspondan. Salvo que pueda producirse alguna ambigüedad, el prefijo mono se omitirá al quedar sobreentendido:

- SO₃: trióxido de azufre.
- P₄O₆: hexaóxido de tetrafósforo.
- N₂O₄: tetraóxido de dinitrógeno.
- CCl₄: tetracloruro de carbono.
- S₂Cl₂: dicloruro de diazufre.

Obsérvese que hay ejemplos en los que no se han simplificado las fórmulas, como P₄O₆, N₂O₄ y S₂Cl₂. Ello recalca que, en los compuestos moleculares, la fórmula representa exactamente el número y la clase de átomos que la integran. Subsiste, sin embargo, la costumbre de designar al P₄O₁₀ como pentóxido de fósforo y al P₄O₆ como trióxido de fósforo, aunque las composiciones reales de ambas moléculas son las indicadas.

En la secuencia de elementos de la IUPAC, a estos efectos de nomenclatura, el hidrógeno (H) está insertado entre el polonio (Po) y el nitrógeno (N) (véase la figura 1). Por tanto, la combinación del hidrógeno con otro elemento que le sigue será un hidruro de ese elemento, mientras que los compuestos que forme con los que le preceden se nombrarán como -uro de hidrógeno, cambiando igualmente la posición del hidrógeno en la fórmula, de acuerdo con lo ya establecido:

- NaH: hidruro de sodio.
- CaH₂: dihidruro de calcio.
- HCl: cloruro de hidrógeno.
- H₂S: sulfuro de dihidrógeno.

La antigua terminología de ácidos hidrácidos, que se limita a unos pocos compuestos de no metales, como los recién citados HCly H₂S, resulta inapropiada en términos >

N.º 609 abril-junio 2014 | 37 ■ QeI | Química e Industria

No obstante, en español sigue siendo frecuente, y no contradice ninguna norma de la IUPAC, el no usar el genitivo y emplear en su lugar la forma adjetivada terminada en -áco para algunos pocos elementos: sodio, potasio, magnesio y calcio.

oei

nomenclatura

de nomenciatura. Esa denominación hace referencia a una propiedad de las disoluciones acuosas de esos compuestos, cuya concentración es variable; así, el ácido clorhídrico es un término genérico que no corresponde a un compuesto químico de composición definida.

Entre los compuestos hidrogenados de los no metales hay algunos que tienen nombres especiales: H₂O, agua; NH₃, amoníaco, y CH₄, metano. Según la nomenclatura de sustitución o reemplazo de la IU-PAC, los nombres sistemáticos del agua y del amoníaco son oxano y azano, respectivamente; de ellos derivan los nombres correspondientes a sus cationes—H₃O+y NH₄+—, oxidanio y azanio, más conocidos como oxonio y amonio, que también son correctos. Debe evitarse cualquier otra alternativa para el catión H₃O+, como la de hidronio.

Por tanto, para nombrar los compuestos binarios no es preciso abordar la distinta naturaleza molecular o iónica, sino que basta con tener en cuenta el criterio de electronegatividad. De este modo puede continuarse indefinidamente con otros casos, como:

- GaAs: arseniuro de galio.
- CaS: sulfuro de calcio.
- BN: nitruro de boro.
- CS₂: disulfuro de carbono.
- WC: carburo de (v)wolframio.
- Ag₂Se: selenuro de diplata.

Aunque para la nomenclatura resulte indiferente la naturaleza de la especie considerada, puede añadirse que, en general, son moleculares aquellos compuestos formados por hidrógeno, oxígeno y halógenos con los restantes elementos no metálicos o semimetálicos - ubicados en la parte superior derecha de la TP-... En cambio, las combinaciones de los más electronegativos con los metales forman compuestos sólidos, muchos de ellos predominantemente iónicos. Tampoco son moleculares otros compuestos formados por combinación de elementos de electronegatividad intermedia o baja --como BN, GaAs, WC, etc.--, que se consideran sólidos covalentes

Mediante la fusión de dos o más metales en diferentes proporciones se pueden formar fases intermetálicas de estequiometría definida, o cuya composición varía dentro de ciertos límites, y que se conocen con el nombre genérico de aleaciones. Estos sólidos tienen mucho interés tecnológico. Merecen citarse las aleaciones de latones (Zn-Cu, zincy cobre), las de bronces (Sn-Cu, estaño y cobre) y las formadas por oro y cobre (Au-Cu), que son muy empleadas en joyería. Finalmente, reciben el nombre específico de amalgamas las aleaciones del mercurio (Hg) con otros metales. Su formulación es muy simple, ya que se escriben los símbolos de los elementos constituyentes —preferentemente por orden alfabético— y se incorporan los subíndices apropiados:

- AuCu, AuCu₃.
- CuZn, Cu5Zn8, CuZn3 (latones).
- Cu₅Sn, Cu₃₁Sn₈, Cu₃Sn (bronces).

Al nombrarlos, se suele leer literalmente la fórmula. Por ejemplo, para referirnos al bronce Cu₃₁Sn₈ diríamos cobre treinta y uno, estaño ocho. No obstante, la IUPAC recomienda expresarlos como los restantes compuestos binarios, es decir, añadiendo el sufijo—uro al elemento que aparezca primero en la figura 1, de forma que el latón Cu₅Zn₈ se nombraría octazincuro de pentacobre.

■3.3. Compuestos formados por más de dos elementos

En este punto se incluyen solo los compuestos formados por dos o más no metales que no forman especies poliatómicas aniónicas -como los oxoaniones y relacionados— unidos a otro elemento. En los casos más habituales tienen tres no metales, donde uno de ellos es el átomo central de una especie molecular y los otros dos se encuentran unidos a él como sustituyentes. A primera vista no parece evidente cuál es el átomo central de una especie poliatómica, pero casi sin excepción es el posterior en la secuencia de la tabla 1, si bien el hidrógeno (H) siempre es sustituyente. El compuesto se considera derivado de los sustituventes terminados en -uro, o de óxido o hidróxido, del átomo central, separándose sus nombres por un espacio:

- SCl₃F: fluoruro tricloruro de azufre.
- SCl₂O₂: dicloruro dióxido de azufre.
- PCl₃O: tricloruro óxido de fósforo.
- FeOCl: cloruro óxido de hierro.

Cuando hay dos metales en el compuesto, estos se separan con la conjunción y, además de nombrarse por orden alfabético:

 KMgCl₃: tricloruro de magnesio y potasio.

Anteriormente se mencionaron dos cationes poliatómicos, H₃O⁺ y NH₄⁺, que forman sales con distintos aniones. Ambos se consideran entidades con nombre propio, como: -NH₄Cl: cloruro de amonio.

Un anión diatómico muy importante es el hidróxido, OH-, que está presente como tal en compuestos iónicos con elementos metálicos. El grupo O-H sin carga tiene un electrón sin compartir sobre el oxígeno, HO; esta especie es un radical v se denomina hidroxilo --no deben confundirse el anión y el radical, ni tampoco sus respectivos nombres-... Genéricamente, recibenel nombre de hidróxidos3 los compuestos formados por cationes metálicos y aniones hidróxido. Se formulan de acuerdo con los criterios antes indicados: manteniendo el grupo OH como una entidad afectada por posibles subíndices. Y se nombran como hidróxido del metal con los prefijos multiplicativos que correspondan. A continuación, varios ejemplos representativos:

- NaOH: hidróxido de sodio.
- Ba(OH)2: (di)hidróxido de bario.
- Al(OH)3: (tri)hidróxido de aluminio.

Finalmente, otros dos aniones diatómicos de interés son el cianuro, CN⁻, y el dióxido(2-) o peróxido, O₂²-:

- NaCN: cianuro de sodio.
- CaO₂: peróxido de calcio.
- H₂O₂: peróxido de hidrógeno (conocido por agua oxigenada).

3.4. Oxoácidos, oxosales y especies relacionadas

Los elementos no metálicos forman numerosas especies del tipo EOx(OH)y. Se trata de especies moleculares en las que el átomo central se une a oxígenos, de los cuales uno, varios o todos ellos están unidos a su vez a hidrógenos. Otra característica es que los hidrógenos de estas especies presentan carácter ácido en disolución acuosa y, por ello, reciben el nombre de oxoácidos --término que sustituye al obsoleto de oxiácidos -.. Al respecto, la IUPAC dice en su Compendio de terminología química, más conocido como su Gold Book o Libro de oro: "Oxoacids is a traditional name for any acid having oxygen in the acidic group. The term oxoacid now refers to a compound which contains oxygen, at least one other element, and at least one hydrogen bound to oxygen, and which produces a conjugate base by loss of positive hydrogen ion(s)

³ Obsérvese que la terminación inglesa -ide —por ejemplo, chloride, hydride, etc.— se transforma en la española –uno, baciendo referencia ambos sulijas a especies aniónicas. En cambio, se ha mantenido para oxide o hydroxide la traducción de óxido e hidróxido, que conservan esa misma comotación aniónica.

Química e Industria [qeɪ ■ 38] N.º 609 abril-junio 2014

Tabla 1. Nomenclatura de oxoácidos y oxoaniones derivados

Fórmulas y nombres aceptables	Fórmulas y nombres sistemáticos
H ₃ BO ₃ : ácido bórico	[B(OH) ₃]: trihidroxidoboro
H ₂ BO ₃ *: anión dihidrogenoborato	[BO(OH)2]-:anión dihidroxidooxidoborato(1-)
[BO ₃]3-: anión borato	anión trioxidoborato(3-)
H ₂ CO ₃ : ácido carbónico	[CO(OH) ₂]: dihidroxidooxidocarbono
HCO3: anión hidrogenocarbonato	[CO2(OH)]: anión hidroxidodioxidocarbonato(1-)
[CO ₃] ² -: anión carbonato	anión trioxidocarbonato(2-)
HNO3: ácido nítrico	[NO ₂ (OH)]: hidroxidodioxidonitrógeno
[NO ₃]: anión nitrato	anión trioxidonitrato(1-)
HNO2: ácido nítroso	[NO(OH)] : hidroxidooxidonitrógeno
[NO ₂]: anión nitrito	anión dioxidonitrato(1-)
H ₃ PO ₄ : ácido fosfórico	[PO(OH) ₃]: trihidroxidooxidofósforo
H ₂ PO ₄ : anión dihidrogenofosfato	[PO2(OH)2]: anión dihidroxidodioxidofosfato(1-)
[PO ₄]3-: anión fosfato	anión tetraoxidofosfato(3-)
H ₃ PO ₃ : ácido fosforoso	[P(OH) ₃]: trihidroxidofósforo
H ₂ PO ₃ : anión dihidrogenofosfito	PO(OH)2]:: anión dihidroxidooxidofosfato(1-)
[PO ₃] ³ : anión fosfito	anión trioxidofosfato(3-)
H ₂ SO ₄ : ácido sulfúrico	[SO ₂ (OH) ₂]: dihidroxidodioxidoazufre
HSO ₄ : anión hidrogenosulfato	[SO ₃ (OH)]: anión hidroxidotrioxidosulfato(1-)
[SO ₄] ²⁻ : anión sulfato	tetraoxidosulfato(2-)
H ₂ SO ₃ : ácido sulfuroso	[SO(OH) ₂]: dihidroxidooxidoazufre
HSO ₃ t: anión hidzogenesulfito	2(OH)]: anión hidroxidodioxidosulfato(1-)
[SO ₃]2-: anión sulfito	anión trioxidesulfato(2-)
HClO ₄ : ácido perclórico	[ClO ₃ (OH)]: hidroxidotrioxidocloro
[ClO ₄]: anión perclorato	anión tetraoxidoclorato(1-)
HClO₃: ácido clórico	[ClO ₂ (OH)]: hidroxidodioxidocloro
[ClO ₃]-: anión clorato	anión trioxidoclorato(1-)
HClO ₂ : ácido cloroso	[ClO(OH)]: hidroxidooxidocloro
[ClO ₂]-: anión clorito	anión dioxidoclorato(1-)
HClO = [O(H)Cl]: ácido hipocloroso	[chloridohydridooxygen, en inglés]
[OCI]: anión hipoclorito	[chloridooxygenate(1-), en inglés]

(hydrons). E.g. P(OH)₃, RC(=O)OH, HOSOH, HOCl, HON=O, (HO)₂SO₂, RP(=O)(OH)₂". En la referencia se cita el P(OH)₃, conocido actualmente con el nombre no sistemático de ácido fosforoso—especie predominante en el equilibrio tautomérico con su isómero, PHO(OH)₂, o ácido fosfónico—. Asimismo, son curiosas las fórmulas del HOCl, del (HO)₂SO₂ y del enigmático HOSOH.

En general, los oxoácidos se formularían escribiendo el átomo central en primer lugar y a continuación los sustituyentes, O y OH. La escritura tradicional que antepone los hidrógenos al elemento central en los oxoácidos, como HNO₃ en lugar de NO₂(OH), carece ya de sentido, si bien se mantiene por razones históricas. Sus nombres sistemáticos evitan hacer referencia al carácter "ácido" de estos compuestos, que resulta superfluo, y resaltan su composición y su estructura molecular. No obstante, los nombres tradicionales de los oxoácidos (ácido sulfúrico, ácido perclórico, ácido bórico, etc.) siguen teniendo plena vigencia.

La llamada nomenclatura de adición considera la especie como una entidad de coordinación y resulta apropiada para nombrarlos oxoácidos, introduciendo sutiles variantes a lo establecido anteriormente. Por ejemplo, el tradicional ácido fosfórico, PO(OH)3, se nombra trihidroxidooxidofósforo, en una sola palabra. En la nomenclatura de adición, pue, el átomo central de la especie se escribe en primer lugar y su nombre aparece al final, maneniendo su terminación si la especie es neutra o catiónica pero añadiendo el sufijo —ato si es aniónica. Algunos ejemplos serían:

- [SO(OH)₃]*: catión trihidroxidooxidoazufre(1+).
 - [SO₂(OH)₂]: dihidroxidodioxidoazufre.
- [SO₃(OH)]: anión hidroxidotrioxidosulfato(1-).

Otra variante respecto a la anterior nomenclatura composicional es que cambia la terminación en inglés de los sustituyentes —ligandos— de -ide a -ido —circunstancia que, en la lengua española, pasa desapercibida en los sustituyentes óxido e hidróxido—. Véase:

 — Si(OH)₄: tetrahydroxidosilicon (tetrahidroxidosilicio).

Sin embargo, esta nomenclatura sistemática no se ha consolidado todavía en las aulas y predomina la tradicional, inadecuada desde el punto de vista de la constitución molecular, en la cual se escriben primero los hidrógenos y después el resto, como se aprecia en las fórmulas y nombres que aparecen a la derecha en los dos ejemplos siguientes:

- [SO₂(OH)₂]: dihidroxidodioxidoazufre = H₂SO₄: ácido sulfúrico.
- [SO₃(OH)] : anión hidroxidotrioxidosulfato(1-) = HSO₄-: anión hidrogenosulfato(1-).

La tabla 1 recoge los oxoácidos más importantes y sus oxoaniones, indicándose entre corchetes la fórmula y el nombre según la nomenclatura de adición. El calificativo de *más importantes* se refiere a que cualquiera de ellos puede aparecer en un texto de química general y que es improbable que en ese contexto se mencionen otros no citados. Los sustituyentes se nombran en orden alfabético. En la formulación de los oxoaniones, sin hidrógenos, caso de [BO₃]³-, se han mantenido los corchetes, pues, si bien son superfluos, así aparecen en el *Red Book* o *Libro rojo* de la IUPAC, *Nomenclatura de química inorgánica*.

Parece claro que este método permite formular y nombrar cualquier oxoderivado, quizás con la excepción de los dos últimos de la tabla, el ácido hipocloroso y el anión hipoclorito, que la IUPAC escribe y nombra de la forma que se ha reproducido. El organismo internacional recomienda dar prioridad a los halógenos sobre el oxígeno en compuestos binarios. Así, el O2Cl es cloruro de dioxígeno, en lugar de dióxido de cloro --ClO₂--; pero ni el oxoácido --Cl(OH)--ni las sales derivadas --como NaClO-- son compuestos binarios. Por tanto, parecería más coherente mantener un criterio uniforme y designarlos hidroxidocloro y oxidoclorato de sodio, respectivamente. Aparte de estas digresiones, la metodología resulta coherente.

Otros oxocompuestos aniónicos de interés en los cursos de química básica son los >

N.º 609 abril-junio 2014 | 39 ■ QeI | Química e Industria

QeI

nomenclatura

- · oxometalatos siguientes, a los que se les aplica la misma sistemática:
 - MnO₄: tetraoxidomanganato(1-).
 - MnO₄2-: tetraoxidomanganato(2-).
 - CrO₄²: tetraoxidocromato(2-).
 - Cr2O72-: heptaoxidodicromato(2-).

A pesar de la indudable utilidad que tiene esta nomenclatura en los compuestos de coordinación, es cierto que resulta algo incoherente postular, en un nivel básico de la enseñanza de la química, que en unos casos los nombres de los sustituyentes se separan del nombre del átomo central por la preposición de -como sucede en AlO(OH): hidroxidooxido de aluminio- y, en cambio, se yuxtaponen todos ellos en una única palabra -caso de CIO(OH): hidroxidooxidocloro--. Pero también es verdad que esta incoherencia afecta a un número limitado de especies; una opción que podría ser de utilidad consistiría en no dar demasiada importancia a dicha preposición cuando llegue el momento de explicar este punto.

Y es que el planteamiento clásico, al enseñar la nomenclatura de estos compuestos, hace que sea aún peor el remedio que la enfermedad. Se suele abordar partiendo de los antiguos anhídridos -término obsoleto para sus óxidos binarios-, escribiendo después unas reacciones con agua y simplificando las fórmulas resultantes, lo que ofrece nuevas complicaciones que se añaden a las intrínsecas. La base de este proceso es escribir las fórmulas de esos anhídridos a partir de las valencias de los elementos, enunciadas axiomáticamente; después, se suma cierto número de moléculas de agua, que se refleja en el prefijo del ácido (meta, piro, orto). Este método suscita tres breves críticas:

I) Los anhídridos, de partida, pueden no tener existencia real.

II) Las reacciones con agua no siempre se producen y, cuando ocurren, no conducen necesariamente a los oxoácidos que se

III) En varios casos, los oxoácidos formulados al final son especies químicas desconocidas hasta la fecha.

Por consiguiente, este método tradicional es puramente especulativo 4 y tiene más connotaciones de ciencia ficción que de química. El resultado es que, en los libros de nomenclatura, se presentan ejemplos ilustrativos como ácido ortohipofosfórico, ácido metaarsénico, ácido arsenioso, ácido metasilícico, ácido dicrómico, ácido piroantimónico, ácido pirovanádico, etc., cuyo interés químico y didáctico es ciertamente discutible. Al respecto cabría preguntarse cuántos estudiantes que hayan superado un curso de Química Inorgánica, e incluso terminado sus estudios de la carrera de Química, sabrían responder a esas cuestiones. En consecuencia, parece más realista y formativo partir de otros supuestos que permitan formular y nombrar los

Química e Industria QeI 40 N.º 609 abril-junio 2014

⁴ Como ejemplos, referidos a los halógenos: Cl₂O y ClsOs, que son fuertemente explosivos; el ClsOs no se conoce, y el ClO2 -- que no se cita nunca-- es quizás el más importante de todos por su producción industrial. Solo C₁₂O y Cl₂O₇ producen los oxoácidos en agua. De los restantes "anhidridos", los únicos descritos son Br₂O y I₂O₅. No se conocen HBrO₂ ni HIO₂ y varios más se han identificado únicamente en disolución acuosa. Colofón: el ácido perbrômico y los perbromatos se obtuvieron por reacciones nucleares de selenatos, mediante emisión/s

oxoácidos existentes. Como ejemplos, los del cloro como elemento más representativo de su grupo y, probablemente, el único que merece mencionarse: Cl(OH), ClO(OH), ClO2(OH) y ClO3(OH)

Esta formulación, que sería conveniente retener incluyendo los paréntesis para resaltar la presencia de los grupos OH, trata de mostrar tres aspectos importantes:

I) Es representativa de la constitución molecular. El Cl es el átomo central y se escribe en primer lugar; a él se une el oxígeno u oxígenos y/o un grupo OH. Este hidrógeno puede ionizarse en medio acuoso, dando lugar a los correspondientes oxoaniones de los que derivan las oxosales.

II) Deja constancia de que no son equivalentes todos los átomos de oxígeno en estas moléculas -excepto, obviamente, en el ClOH-

III) Marca la diferencia -que no es trivial-entre estas especies moleculares y las de las oxosales --iónicas --: NaClO, NaClO2, NaClO3 y NaClO4, donde todos los oxígenos sí son equivalentes. Cuando se dice que "el catión sodio sustituye al hidrógeno del oxoácido", muchos estudiantes lo interpretan literalmente y suponen que el sodio pasa a compartir un par de electrones con un oxígeno, lo cual es notoriamente incierto.

Los oxoácidos en agua dan lugar a reacciones de ionización de los átomos de hidrógeno unidos a los oxígenos, formando los correspondientes oxoaniones, junto con hidrones -los protones son exclusivamente los núcleos de ¹H+--. Las especies H+ y H₃O+ reciben el nombre genérico de hidrón cuando están asociadas a un número indeterminado de moléculas de agua en disolución acuosa; para precisar esta cualidad se agrega (ac) o (aq), quedando H3O+(ac). Se denomina oxonio - representado también por H₃O+- al catión que existe como tal en ciertos compuestos iónicos, caso de (H3O)ClO4 -perclorato de oxonio, de constitución: H₃O+ClO₄:---

Finalmente, en los oxoaniones, todos los sustituyentes óxido son equivalentes. La carga negativa del anión se distribuye entre los oxígenos y se compensa con los cationes de las oxosales. Estas últimas se nombran añadiendo el sufijo -ato al elemento central y acompañándolo de dichos cationes por orden alfabético. Por ejemplo:

- NaClO₂: dioxidoclorato de sodio.
- LiFePO₄: tetraoxidofosfato de hierro v litio.
- Li₂MnO₄: tetraoxidomanganato de (di)litio.

En esta nomenclatura de adición simplemente se especifica la composición de la especie química, no su constitución. Con relación a la estructura, el LiFePO4 es propiamente una oxosal, ya que los aniones fosfato tetraédricos [PO₄] están presentes como tales en la estructura del sólido. En cambio, el Li2MnO4 es un óxido mixto donde la coordinación del manganeso es octaédrica, no pudiendo diferenciarse entidades aisladas -- [MnO6]--. Por ello, al no tratarse de una oxosal, sería más adecuado decir tetraóxido de manganeso y (di)litio. Pero estas precisiones no son relevantes en una presentación básica de la nomenclatura.

4. Anotación complementaria

Sin otorgarle el protagonismo que han venido teniendo en la llamada Nomenclatura de Stock - que no es una alternativa reconocida por la IUPAC-, puede mencionarse el uso de números romanos para indicar los estados de oxidación formales de los elementos en un compuesto, como: Fe^{II}Fe^{III}2O4. Recuérdese, no obstante, la recomendación de escribir los estados de oxidación con números arábigos. Véase, por ejemplo, -2, 0,

+4 y+6 para el azufre, en H2S, S8, SO2 y SO3, respectivamente. El concepto y el uso de los estados de oxidación merecen una consideración detallada y se expondrán en un próximo trabajo.

5. Corolario

Por el indudable interés que tiene en muchos ámbitos educativos en España, sería muy necesario que la Real Sociedad Española de Química y la Asociación Nacional de Químicos de España se plantearan proponer a las autoridades competentes la unificación de los criterios de la nomenclatura química en la enseñanza secundaria. Se hace particularmente indispensable en las pruebas de acceso a la universidad de todo el país y también en las olimpiadas de química, incluidas las iberoamericanas.

Bibliografía

Nomenclature of Inorganic Chemistry, IUPAC Recommendations 2005, Neil G. Connelly v Ture Damhus Senior Eds., RSC Publishing (Nomenclatura de Química Inorgánica. Recomendaciones de la IUPAC de 2005. Prensas Universitarias de Zaragoza, 2007).

MEDICIÓN Y CONTROL PARA LA INDUSTRIA Y EL MEDIO AMBIENTE

N.º 609 abril-junio 2014 41 ■ QeI Química e Industria

Otros materiales de interés (Breve historia de la traducción del Libro Rojo)

http://tremedica.org/panacea.html

Tribuna

Breve historia de la traducción del *Libro rojo* de 2005 de la IUPAC

Miguel Ángel Ciriano* y Pascual Román Polo**

Resumen: La traducción, edición y publicación del libro Nomenclatura de Química Inorgánica. Recomendaciones de la IUPAC 2005 (Libro rojo de 2005) en español se realizó en tan sólo veinte meses tras la aparición de la versión original a finales de noviembre de 2005; fue la primera versión en lengua no inglesa que se publicó en el mundo. Para su traducción se utilizaron varios criterios lingüísticos —tales como respetar, hasta donde fuera posible, el DRAE, los diccionarios de la RACEFYN y el Libro rojo de 1990 de la IUPAC, traducido por Bertello y Pico Marín en 2001—" y un meticuloso plan de trabajo para evitar errores y abaratar los costes de edición. Hubo que vencer dificultades hasta lograr la traducción más apropiada de términos ingleses inexistentes en español y adaptar otros para su introducción en el castellano. Una vez finalizada la obra, fue revisada por expertos químicos españoles para unificar los términos más dudosos. Se acordó que la palabra inglesa tungsten se traduciría únicamente por wolframio para homenajear a los verdaderos descubridores de este elemento: los hermanos Juan José y Fausto Delhuyar.

Palabras clave: nomenclatura, química inorgánica, recomendaciones, IUPAC, 2005.

Brief history of the IUPAC Reed Book 2005 translation

Abstract: The translation, editing and publishing of the book Nomenclature of Inorganic Chemistry. IUPAC Recommendations 2005 (Red Book 2005) into Spanish was accomplished in only twenty months after the appearance of the original version in late November 2005, and it was the first non-English language version published in the world. For this purpose, several linguistic criteria were used as far as possible, such as to have a respect for the DRAE, the dictionaries of RACE-FYN, and the IUPAC Red Book 1990, translated by Bertello and Pico Marin in 2001. In addition, a meticulous plan of work to avoid errors and lowering costs of editing was followed. Translators had to overcome some difficulties to achieve the most appropriate translation of nonexistent British terms into Spanish and to adapt others to be embedded into Spanish language. Once the work was accomplished, it was reviewed by Spanish chemical experts to unify the use of the more dubious terms. It was agreed that the English word tungsten should only be translated as wolframio, to pay homage to the true discoverers of this element: the brothers Juan José and Fausto Delhuyar.

Key words: nomenclature, Inorganic Chemistry, recommendations, IUPAC, 2005.
Panace@ 2008, IX (28): 171-176

Introducción

El jurado de la XI edición de los Premios Nacionales de Edición Universitaria, que convoca anualmente la UNE (Unión de Editoriales Universitarias Españolas), en su reunión celebrada el 17 de julio de 2008 en Madrid, concedió el Premio a la Mejor Traducción a Prensas Universitarias de Zaragoza (PUZ) por la obra Nomenclatura de Química Inorgánica. Recomendaciones de la IUPAC de 2005, traducida por Miguel Ángel Ciriano y Pascual Román Polo. Los autores de la traducción, acompañados de Antonio Pérez Lasheras, director de PUZ, recogieron tan preciado galardón el 8 de octubre de 2008, en el marco del Liber 2008, la Feria Internacional del Libro, que se celebró en esta edición en Barcelona.

La obra se presentó a la comunidad universitaria, investigadores y socios de la Real Sociedad Española de Química (RSEQ) y de la Unión Internacional de Química Pura y Aplicada (International Union of Pure and Applied Chemistry,

IUPAC) el día 16 de octubre de 2007. El acto estuvo presidido por Luis A. Oro, presidente del Comité Español de la IUPAC y promotor de la publicación del libro. También, asistieron al acto Nazario Martín, presidente de la RSEQ; Pilar Goya, secretaria del Comité Español de la IUPAC y vicepresidenta de la RSEQ; Alicia Gómez-Navarro, directora de la Residencia de Estudiantes, y numerosos profesores e investigadores del CSIC y de universidades españolas.

En realidad, la historia había comenzado mucho antes, cuando los autores de la versión inglesa subieron al servidor de la IUPAC (http:/old.iupac.org/) el borrador del libro Nomenclature of Inorganic Chemistry. IUPAC Recommendations 2005 (the Red Book) para su exposición pública. Antes de su publicación, Pilar Goya y Pascual Román se dirigieron a los autores para reivindicar el nombre wolfram junto con el de tungsten para el elemento de número atómico 74, como había sido habitual en ediciones anteriores y, de este modo, hacer

^{*} Instituto de Ciencia de Materiales de Aragón, CSIC, Universidad de Zaragoza (España). Dirección para correspondencia: mciriano@unizar.es.

^{**} Universidad del País Vasco, Bilbao (España).

Otros materiales de interés (Breve historia de la traducción del Libro Rojo)

Tribuna

http://tremedica.org/panacea.html

justicia a sus ilustres descubridores, los científicos riojanos hermanos Juan José y Fausto Delhuyar, que lo aislaron en Vergara (Guipúzcoa) en 1783 y le dieron el nombre de wolfram. Esta reivindicación apareció publicada en la sección «Up for Discussion» de la revista International Chemistry de la IU-PAC en el número de julio-agosto de 2005, acompañada de la respuesta del profesor Ture Damhus, uno de los coeditores de la obra.^{1, 2} En su contestación, Damhus decía que solo puede haber un nombre para cada elemento, y este es tungsteno en inglés, aunque la IUPAC permite el uso de wolfram o una voz derivada en otras lenguas. En marzo de 2006, Román, para contrarrestar la divulgación y evitar el uso del nombre tungsteno en castellano, publicó el artículo «El verdadero nombre del metal tungsten es: wolframio» en la revista Apuntes de Ciencia y Tecnología.³

En septiembre de 2005, Luis A. Oro, a la sazón presidente de la RSEQ y del comité español de la IUPAC, se dirigió a Ciriano y Román para sugerirles y encomendarles la traducción de la obra. El objetivo era el uso coherente y uniforme de los términos empleados en química y su adaptación lo antes posible al español, idea motriz que observaron los traductores una vez aceptado el compromiso con el profesor Oro.

Para contrastar la calidad de la traducción, una vez finalizada la traducción y adaptada al español, debía ser enviada para su última revisión a reconocidos químicos e investigadores españoles en el área de la química inorgánica y a las Sociedades Químicas de Argentina, Chile, España y Puerto Rico.

La IUPAC y el Libro rojo de 2005

La IUPAC es una organización científica internacional no gubernamental y sin ánimo de lucro, fundada en 1919 por químicos de la industria y del mundo académico para el avance y progreso de las ciencias químicas y para contribuir a la aplicación de la química al servicio de la humanidad. Los fundadores reconocieron la necesidad de establecer estándares globales en la simbología y los protocolos operacionales de la química. Es la máxima autoridad mundial reconocida para la toma de decisiones sobre nomenclatura química, terminología, métodos estandarizados de medida, pesos atómicos y muchos otros datos considerados de fundamental importancia. A través de su Comité Interdivisional de Nomenclatura y Símbolos (Nomenclatura de la IUPAC) establece las normas sobre estas materias. Es miembro del Consejo Internacional para la Ciencia (International Council for Science, ICSU).

En la actualidad, están presentes en ella todos los países interesados (51 organizaciones nacionales adheridas; las de otros 18 países están vinculados a la IUPAC en calidad de organizaciones nacionales asociadas). Más de 1400 científicos voluntarios de todo el mundo, comprometidos con los proyectos de esta organización, desarrollan su trabajo a través de proyectos que se encuadran en ocho divisiones y diferentes comités. La División VIII, Nomenclatura Química y Representación Estructural, es la encargada de velar por la pureza de la nomenclatura y la terminología de los compuestos químicos. La IUPAC patrocina las principales reuniones internacionales (65 en el último bienio), desde simposios científicos

especializados hasta conferencias sobre química aplicada a las necesidades del mundo. Los años impares se celebra el Biennial IUPAC Congress and General Assembly; el último tuvo lugar en Turín (Italia, 2007), y los próximos tendrán lugar en Glasgow (Escocia, 2009) y Puerto Rico (2011).

Durante casi nueve décadas, la IUPAC ha tenido un gran éxito en la creación y desarrollo de las comunicaciones mundiales en ciencias químicas y en el intento de unir a los químicos académicos con los de la industria y los servicios en un idioma común. Entre otras actividades, publica revistas científicas, como Chemistry International, Pure and Applied Chemistry y Macromolecular Symposia, libros, informes técnicos y recomendaciones, y materiales en Internet (recursos educativos, bases de datos...).º Entre los libros publicados por la IUPAC, destacan los dedicados a nomenclatura química, magnitudes, unidades y símbolos, que se recogen en el cuadro 1.d Estas obras se caracterizan por el color de sus portadas y contraportadas, que identifican visualmente el área de la química que tratan. Así, el color naranja está relacionado con la nomenclatura de la química analítica; el azul, con la química orgánica; el oro, con la terminología química y las definiciones; el verde, con las magnitudes, unidades y símbolos empleados en química física; el rojo, con la química inorgánica; el púrpura, con la nomenclatura de las macromoléculas; el blanco, con la bioquímica, y el color plata identifica la nomenclatura de las ciencias clínicas de laboratorio. De este modo tan sencillo, se establece la relación entre un área de la química y el color correspondiente. Lo único que varía es el contenido, el año de edición y los autores; por ejemplo, el Libro rojo de la IUPAC 2005 ha sido coeditado por Connelly, Damhus, Hartshorn y Hutton. Su traducción al español, la primera que se llevó a cabo en el mundo, se publicó tan solo veinte meses después de la aparición de la versión original inglesa. En la figura 1 se muestran las portadas de la obra original y la versión española.

Figura 1. Portadas del *libro rojo* de 2005 en versión española y original

Breve historia de la traducción del Libro rojo de 2005

La traducción al español comenzó en octubre de 2005, antes de la publicación de la versión original inglesa del *Libro rojo* de 2005. Inicialmente, se trabajó con los materiales que sus au-

172

Panace @. Vol. IX, n.º 28. Segundo semestre, 2008

Otros materiales de interés (Breve historia de la traducción del Libro Rojo)

http://tremedica.org/panacea.html

Tribuna

Cuadro 1. Libros de la IUPAC dedicados a la nomenclatura química, magnitudes, unidades y símbolos

Año	Titulo
1978	Compendium of Analytical Nomenclature - The Orange Book, 1st edition
1979	Nomenclature of Organic Chemistry - The Blue Book
1987	Compendium of Analytical Nomenclature (definitive rules 1987) - The Orange Book, 2nd edition
1907	Compendium of Chemical Terminology - The Gold Book, 1st edition
1988	Quantities, Units and Symbols in Physical Chemistry, Terminology - The Green Book, 1st edition
1989	A Guide to IUPAC Nomenclature of Organic Compounds
1990	Nomenclature of Inorganic Chemistry (recommendations 1990) - The Red Book ⁽⁴⁾
1991	Compendium of Macromolecular Nomenclature, 1st edition - The Purple Book
1992	Biochemical Nomenclature and Related Documents - The White Book
1993	A Guide to IUPAC Nomenclature of Organic Compounds (recommendations 1993) - A guide to the Blue Book.
1993	Quantities, Units and Symbols in Physical Chemistry - The Green Book, 2nd edition
1995	Compendium of Terminology and Nomenclature of Properties in Clinical Laboratory Sciences - The Silver Book
1997	Compendium of Chemical Terminology - The Gold Book, 2nd edition
1997	Nomenclatura de química inorgànica: recomendacions de 1990
1998	Compendium of Analytical Nomenclature (definitive rules 1997) - The Orange Book, 3rd edition
Principles of Chemical Nomenclature: a Guide to IUPAC Recommendations	
1999	Compendium de terminologie chimique
	A Guide to IUPAC Nomenclature of Organic Compounds
2000	Magnitudes, Unidades y Símbolos en Química Física, segunda edición
	Nomenclature of Inorganic Chemistry II. Recommendations 2000
2001	Nomenclatura de Química Inorgánica. Recomendaciones de 1990 ⁽⁵⁾
2001	Nomenclature of Inorganic Chemistry II. Recommendations 2000
2002	A Guide to IUPAC Nomenclature of Organic Compounds
2003	Compendio de terminología química. Recomendaciones de la IUPAC
2004	Quantities, Units and Symbols in Physical Chemistry, 1st edition
2005	Nomenclature of Inorganic Chemistry - IUPAC Recommendations 2005 ^[6]
2006	Compendium of Chemical Terminology
2007	Nomenclatura de Química Inorgánica. Recomendaciones de la IUPAC de 2005 ^[7]
2007	Quantities, Units and Symbols in Physical Chemistry - the IUPAC Green Book - 3rd edition
2008	IUPAC Compendium of Chemical Terminology - the Gold Book. New version of the online Gold Book.*

principal guía, así como los diccionarios de la Real Academia autorización. de Ciencias Exactas, Físicas y Naturales (RACEFYN) y la obra de G. J. Leigh, traducida por Bertello y Pico en el año 2001.⁵

tores habían colgado en la web de la IUPAC. El procedimiento inglesa. Puestos en contacto los traductores con el editor seguido fue el siguiente: Ciriano traducía directamente del principal, Neil G. Connelly, para solicitarle una copia de inglés, manteniendo una maquetación en la que prácticamente 🏻 los originales, este advirtió, al realizar el envío, que no solo coincidía la paginación de la obra inglesa con su traducción al había importantes diferencias con la versión de Internet castellano. De este modo, se mantenían las mismas páginas y que los traductores estaban manejando, sino que se habían se evitaba que las figuras y esquemas se dividieran, al conser-hecho varias correcciones sobre las pruebas de imprenta del var el mismo formato. Román corregía el texto y el estilo y libro. Para entonces ya se habían traducido seis capítulos. eliminaba los errores. Una vez traducidos dos o tres capítulos, Los traductores consiguieron un ejemplar en enero de 2006 Ciriano y Román los revisaban conjuntamente, reuniéndose en y, en consecuencia, tuvieron que comenzar una nueva traalguna ciudad española. En la primera ocasión se adoptaron los ducción, basada en la obra publicada por la Royal Society of siguientes acuerdos: el Diccionario de la RAE (DRAE) sería la Chemistry (RSC Publishing) y la IUPAC, 6 contando con su

A finales de enero de aquel año, comenzó la traducción basada en el libro recién publicado, con la inestimable ayu-A finales de noviembre de 2005 se publicó el Libro rojo, da de un gran número de figuras y fórmulas estructurales con las recomendaciones de la IUPAC de 2005, en su versión originales facilitadas por la RSC y la IUPAC. Desde febrero

Panace @. Vol. IX, n.º 28. Segundo semestre, 2008

Otros materiales de interés (Breve historia de la traducción del Libro Rojo)

Tribuna

http://tremedica.org/panacea.html

Cuadro 2. Fechas más importantes del proceso de traducción del Libro rojo de 2005 y premios recibidos

Año	Título
	A comienzos de septiembre, Luis A. Oro propone traducir el Libro rojo de 2005, próximo a aparecer.
	Los traductores, Miguel A. Ciriano y Pascual Román, aceptan el encargo y comienzan la traducción basada en los textos colgados en Internet (20.9.2006).
2005	Se establece la estrategia sobre el formato del texto y las reglas que se van a seguir: respetar, hasta donde sea posible, el DRAE, los diccionarios de la RACEFYN y la traducción de Bertello y Pico Marín del Libro rojo de 1990.
2003	A finales de noviembre, aparece la versión original inglesa del Libro rojo de 2005. La RSC y la IUPAC facilitan a los traductores los textos originales en inglés. Connelly comunica que ha recibido su ejemplar del Libro rojo (2.12.2006).
	Los traductores, después de haber finalizado seis capítulos, deciden comenzar de nuevo al advertirles el editor principal, Neil G. Connelly, de las modificaciones y comprobar cambios importantes con relación a la versión colgada en Internet (diciembre)
	En enero, los traductores adquieren la versión original del <i>Libro rojo</i> de 2005 y comprueban que, de nuevo, hay modificaciones respecto a la versión facilitada por la RSC.
	Aparecen las primeras grandes dificultades idiomáticas, que suponen discusiones y consultas a expertos (febrero-abril).
2006	En Semana Santa, se habían traducido los seis primeros capítulos de los once que componen la obra más un extenso anexo dedicado a las tablas (abril).
	Desde mayo a diciembre se terminó de traducir la obra completa.
	Surgen nuevos problemas idiomáticos (mayo-diciembre).
	A finales de diciembre, Prensas Universitarias de Zaragoza (PUZ) acepta publicar el Libro rojo de 2005 y se compromete a hacerlo antes del verano de 2007.
	Se envían copias a reconocidos químicos e investigadores españoles y a las Sociedades Químicas de Argentina, Chile, España y Puerto Rico para su revisión (enero).
	En los meses de enero y febrero, los traductores revisan el texto completo.
	Cuatro expertos envían sus sugerencias y propuestas de mejora (marzo). El corrector de estilo de PUZ devuelve el texto corregido (abril).
2007	El Libro rojo de 2005 en versión española se envía a la imprenta (17.5.2007).
	En los meses de mayo y junio, los traductores revisan las galeradas del Libro rojo de 2005.
	En la primera semana de julio, aparece la versión española del Libro rojo de 2005.
	Presentación de la versión castellana del <i>Libro rojo</i> de 2005 en el Biennial IUPAC Congress and General Assembly (Turín, 13-21.8.2007).
	Presentación de la versión española del Libro rojo de 2005 en la Residencia de Estudiantes del CSIC (Madrid, 16.10.2007).
2008	La UNE otorga el Premio a la Mejor Traducción a Prensas Universitarias de Zaragoza (PUZ) y a sus traductores por la obra Nomenclatura de Química Inorgánica. Recomendaciones de la IUPAC de 2005 (Madrid, 17.7.2008).
2006	La UNE entrega el Premio a la Mejor Traducción al director de Prensas Universitarias de Zaragoza (PUZ) y a los traductores del Libro rojo de 2005 (Barcelona, Liber 2008, 8.10.2008).

de 2006 se produjo un gran avance en la traducción, espe- La traducción del Libro rojo: estructura y dificultades cialmente en las vacaciones de Semana Santa y verano. A finales de diciembre estaba completada la traducción del original. En las navidades de 2006, se contactó con los responsables de Prensas Universitarias de Zaragoza (PUZ) —quienes acogieron el proyecto con gran entusiasmo— para la edición y publicación de la obra. Se acordó con ellos que el libro debía publicarse antes del verano de 2007. El 17 de mayo de aquel año se envió a la imprenta. La coordinación v revisión de la obra traducida al castellano se revisó en Logroño (en dos ocasiones), Zaragoza (cuatro), Madrid (dos) y Bilbao (la revisión definitiva), ya que los traductores trabajan en Zaragoza y Bilbao. En el cuadro 2 se recogen las principales fechas del proceso de traducción del Libro rojo de 2005 y los premios recibidos.

Tras la tabla periódica de los elementos químicos y los prólogos en español e inglés, el Libro rojo de 2005 se estructura en once capítulos más un anexo de diez tablas (92 páginas) y un índice de materias. La obra en español se compone de un total de 380 páginas, mientras que la versión original tiene 378. La principales diferencias entre las ediciones de 1990 y 2005 del Libro rojo se hallan en la distinta reordenación de los once capítulos que componen ambos textos y la introducción de uno nuevo, dedicado a la nomenclatura de los compuestos organometálicos (capítulo 10). Los cuatro primeros capítulos apenas ofrecen diferencias en ambas ediciones.

Es a partir del quinto capítulo y hasta el final del libro donde se presentan las mayores diferencias. En la nueva versión, la nomenclatura de los compuestos inorgánicos sigue tres tipos bien

174

Panace Q. Vol. IX, n.º 28. Segundo semestre, 2008

Otros materiales de interés (Breve historia de la traducción del Libro Rojo)

http://tremedica.org/panacea.html

Tribuna

diferenciados: composición (capítulo 5), sustitución (capítulo 6) y adición (capítulo 7). Los ácidos inorgánicos y sus derivados son abordados en el capítulo 8, mientras que los compuestos de coordinación y los compuestos organometálicos se estudian en los capítulos 9 y 10, respectivamente. El capítulo de sólidos se traslada al final del texto (capítulo 11), cuando antes aparecía como capítulo 6. La obra finaliza con diez tablas; las tablas VII, VIII y IX son las que presentan las diferencias más notables con la obra precedente.

Se han encontrado algunas dificultades en la traducción de términos concretos, para los que se ha tratado de encontrar el equivalente más utilizado y comúnmente aceptado o la palabra admitida por los químicos hispanohablantes. Se tomó la decisión de mantener como propias las abreviaturas inglesas de los ligandos, los símbolos de los poliedros, las redes de Bravais y las variedades alotrópicas para ofrecer mayor uniformidad con la bibliografía científica y evitar errores de interpretación.

En otras ocasiones, la dificultad surgía de matices del lenguaje posibles en inglés e imposibles en español, como el cambio de la terminación -e de los aniones por la -o cuando se trata de ligandos aniónicos, por ejemplo, chloride y chlorido por cloruro. Las terminaciones de los ligandos organometálicos, radicales o grupos sustituyentes que forman parte de un enlace múltiple o con varias valencias insaturadas se han escrito directamente con la vocal o final; por ejemplo, metilideno, azanilideno, propano-1,3-diilo, etcétera, aunque existen algunos nombres admitidos por la IUPAC sin esta vocal final, como metilen o fenilen.

En la versión española se ha reivindicado el uso del término wolframio, en lugar de tungsteno, en todos los idiomas, tanto de raíz latina como no latina, porque es el nombre del elemento en español y en homenaje a los verdaderos descubridores del metal de número atómico 74 y símbolo W: los hermanos Juan José y Fausto Delhuyar, quienes lo aislaron en 1783. Esta reivindicación se ha llevado a la portada del libro, en la que aparece el sello de correos dedicado a honrar al químico ruso Mendeléiev, quien nos legó la primera versión de la tabla periódica moderna, con ocasión de conmemorarse en 2007 el centenario de su muerte.

Ha habido que superar las dificultades que suponen algunos matices con un significado muy importante, posibles en inglés pero sin una traducción razonable en español. Se han encontrado algunos términos en inglés creados ad hoc pero no reconocidos por los diccionarios ingleses, como: locant, locations, ligating atoms, bicapped, tricapped o polyhedral symbol, así como algunas palabras que se corresponden a versiones de términos creados en la bibliografía química en inglés, como ligando, metaloceno, oligonuclear, organometálicos, boranos, clúster, etcétera.

Algunas palabras inglesas han requerido inventar un nombre sencillo en español, por ejemplo, see-saw, 'caballete de serrar', que se ha traducido por balancín. Una de las más importantes modificaciones se refiere a la inversión del orden del oxígeno y los halógenos respecto de la versión de 1990. Esto afecta a las fórmulas y a los nombres de los antes llamados óxidos de los halógenos e hipohalitos. Según la nueva

tabla de la secuencia de los elementos (tabla VI, p. 261), el oxígeno aparece detrás de Cl, Br y I. Por tanto, en los compuestos binarios, el oxígeno se escribe en las fórmulas en primer lugar, lo que conduce también a un cambio en los nombres. Por ejemplo, el antes llamado óxido de dicloro, formulado como Cl₂O, ahora se formula OCl₂ y se le llama dicloruro de oxígeno (p. 70).

En los nombres de las entidades de coordinación, los nombres de los ligandos aniónicos se modifican en inglés, pero no en español; así los ligandos que terminan en -uro (-ide) se convierten en -uro (-ido), y los terminados en -ato (-ate) lo hacen en -ato (-ato). En el Libro rojo de 1990 había un número importante de excepciones a esta regla, por ejemplo, los ligandos cloruro se nombraban en el nombre por cloro. los ligandos nitrito por nitro (si se unen a través del átomo de nitrógeno) y los ligandos cianuro por ciano. En el Libro rojo de 2005 se evitan todas estas excepciones, de modo que la regla general se aplica a todos los ligandos (p. 151). Con las nuevas recomendaciones, cloro (chloro, en inglés) se usa en la nomenclatura de sustitución (frecuentemente usada en química orgánica), mientras que cloruro (chlorido, en inglés) se emplea para indicar que está unido a un átomo central. Es preciso notar que cloruro (chloride) se emplea para indicar un anión.

Con las recomendaciones de 2005 no existe ya necesidad de enumerar los ligandos aniónicos antes que los ligandos neutros, lo que genera fórmulas más sencillas, sin tener que decidir si el ligando es o no aniónico (p. 153). En los cationes poliatómicos, el NH₄⁺ se llama azanio (nomenclatura de sustitución) o amonio (nombre no sistemático, pero aceptado por la IUPAC). El catión H₃O⁺ se llama oxidanio (nomenclatura de sustitución), u oxonio (nombre no sistemático, pero aceptado por la IUPAC); sin embargo, no se puede denominar hidronio.

En la versión castellana del Libro rojo de 2005, el anión termina en -uro. La primera excepción a esta regla, que no acaba en -uro, es el óxido, pero su terminación se parece a la inglesa. Según las nuevas normas debería llamarse ¿oxuro, oxiuro u oxigenuro? Ninguno de estos nombres tiene sentido, y no se puede implantar una nueva norma en contra de una palabra que no solo está establecida en química, sino también en el lenguaje popular. Para el anión cloruro no hay problemas, pero ¿cómo se distingue el cloruro cuando actúa como un ligando? Si se utiliza el nombre cloruro para el ligando y el anión no se sabe con claridad a cual nos estamos refiriendo. Otro tanto ocurre con los nombres hidruro, sulfuro, fluoruro, etcétera.

En la nomenclatura de adición de los ácidos inorgánicos aparecen nombres que pueden parecer extraños, por lo que es preferible utilizar los nombres comunes o vulgares permitidos por la IUPAC. Así, el H₂SO₄ se llama, según la IUPAC, dihidroxidodioxidoazufre, pero también permite denominarlo ácido sulfúrico.

Algunos nombres de elementos químicos de la RAE, como ástato, tantalio y telurio no coinciden con los usuales en castellano: astato, tántalo y teluro, según la RACEFYN. Por ello, se han utilizado los aconsejados por esta ilustre Academia.

Otros materiales de interés (Breve historia de la traducción del Libro Rojo)

Tribuna

http://tremedica.org/panacea.html

La solución a estos problemas requiere un traductor que, además de saber inglés y ser químico, debe tener una gran experiencia en temas variados y muy especializados de química inorgánica sobre los que ha leído y publicado. Solo de esta forma se pueden encontrar las correspondientes palabras con sentido en castellano. Las normas de numeración de cadenas, ciclos, preferencias de orden en los nombres y fórmulas entre símbolos deben expresarse muy claramente y requieren haberlos usado previamente en inglés para conocer su significado.

Finalmente, hay que mencionar que no todos los químicos están de acuerdo en adoptar las recomendaciones de la IUPAC de 2005. Por citar algunos ejemplos: 1) la definición de metaloceno (págs 226 y siguientes) y 2) la eliminación del símbolo η¹ (IR-9.2.4.3).

En la presentación del Libro rojo de 2005 en la Residencia de Estudiantes del CSIC, Luis A. Oro, además de agradecer a los traductores el esfuerzo realizado, subravó la fidelidad a la obra original, la elegancia y rigor de la traducción —no exenta de importantes retos— y la rapidez con la que se había llevado a cabo. En este sentido, destacó que la traducción española del Libro rojo de la IUPAC era la primera que se había hecho en todo el mundo. Dicha traducción fue presentada en la Asamblea General y Congreso Bienal de la IUPAC, celebrados en agosto de 2007 en Turín, donde despertó la admiración de los asistentes por la rapidez con la que se había realizado. En este mismo acto, Pascual Román, en nombre de los traductores, agradeció los comentarios y sugerencias de los revisores, en particular, el profesor Ernesto Carmona, y a las instituciones que habían apoyado la iniciativa -el Comité Español de la IUPAC, la RSEQ, el CSIC y la editorial Prensas Universitarias de Zaragoza- por su acogida y la asunción del riesgo empresarial

Luis A. Oro cerró el acto animando a los asistentes a utilizar las nuevas normas de la IUPAC, que, si bien en algunos aspectos no están exentas de controversia, son una herramienta universalmente aceptada para la normalización de la difícil tarea de nombrar, formular y representar el cada vez mayor número de compuestos químicos inorgánicos.

Conclusiones

Esta edición del Libro rojo de 2005 actualiza y clarifica las recomendaciones publicadas en 1990 sobre nombres y fórmulas de los compuestos inorgánicos y refleja los avances más recientes de la química inorgánica. La obra es la guía definitiva para los científicos que trabajan en el mundo académico o en la industria, para los editores de libros, revistas científicas y bases de datos y para las organizaciones que necesitan disponer de una nomenclatura aprobada internacionalmente.

Notas

- Véase http://old.iupac.org/reports/provisional/abstract04/conne-lly-310804.html>.
- b Véanse <www.iupac.org/> y <http://old.iupac.org/>.
- Véase www.iupac.org/Publications>.
- Véanse http://www.iupac.org/publications/books/seriestitles/nomen-clature.html.
- Véase http://goldbook.jupac.org/>.

Bibliografía

- Goya, P., y P. Román (2005): «Wolfram vs. Tungsten», Chemistry International, 27 (4): 26–27.
- Damhus, T. (2005). «Wolfram vs. Tungsten. Reply from Ture Damhus», Chemistry International, 27 (4): 27–28.
- Román, P. (2006): «El verdadero nombre del metal tungsten es: wolframio», Apuntes de Ciencia y Tecnología, 18: 23-31.
- Leigh, G. J. (ed.) (1990): Nomenclature of Inorganic Chemistry. IUPAC Recommendations 1990. Oxford: Blackwell Scientific Publications.
- Leigh, G. J. (ed.): (2001): Nomenclatura de Química Inorgánica. Recomendaciones de 1990. (Trad.: Luis F. Bertello y Carlos Pico Marín.) Madrid: Centro de Estudios Ramón Areces.
- Connelly, N. G., T. Damhus, R. M. Hartshorn y A. T. Hutton (eds.) (2005): Nomenclature of Inorganic Chemistry. IUPAC Recommendations 2005. Cambridge: RSC.
- Connelly, N. G., T. Damhus, R. M. Hartshorn y A. T. Hutton (eds.) (2007): Nomenclatura de Química Inorgánica. Recomendaciones de la IUPAC de 2005. (Trad.: Miguel A. Ciriano y Pascual Román Polo. Zaragoza: PUZ.

El lápiz de Esculapio

La carabela

Joaquín Valls Arnau

La sala de espera de mi dentista acostumbra a ser un espacio alegre y bullicioso. Algo tendrá que ver en ello el hecho de que sea una persona dotada de unas manos prodigiosas y también de un gran sentido del humor. Recuerdo que en la primera visita, cuando todavía era un niño, nada más sentarme en el sillón articulado me llamó la atención su dentadura, manchada de nicotina y con la mayoría de piezas torcidas y superpuestas. Supongo que por mi cara de asombro adivinó lo que me pasaba por la cabeza, y anticipándose me comentó con ironía que no se fiaba de los dentistas, de ninguno de ellos. Hace unos meses, cuando me decidí a ponerme un implante artificial y le pregunté si se trataba de una solución duradera, me respondió con una media sonrisa que aquella muela falsa quedaría sujeta para siempre a mi «carabela», con la que emprendería el último de mis viajes.

Panace@. Vol. IX, n.º 28. Segundo semestre, 2008

Guía sobre el Uso de la Nomenclatura de Química Inorgánica para las Pruebas de Acceso a la Universidad

Índice

1	Introducción	3
2	Recomendaciones	5
3	Nomenclatura de los elementos	6
4	Nomenclatura de los iones simples	6
5	Nomenclatura de los compuestos binarios	7
6	Nomenclatura de los compuestos ternarios y cuaternarios	13
7	Nomenclatura de los iones heteropoliatómicos	18
8	Referencias	20
9	Anexo, Modelos de ejercicios y soluciones	21

1. INTRODUCCIÓN

El objetivo principal de esta guía consiste en divulgar y homogeneizar las recomendaciones de la International Union of Pure and Applied Chemistry (IUPAC) en el ámbito de la nomenclatura sistemática inorgánica. Así, esta guía recoge las recomendaciones de la IUPAC de 2005 incluidas en su Libro Rojo (http://media.iupac.org/publications/books/rbook/Red Book 2005.pdf) [1] y traducidas el castellano posteriormente [2]. Con esta guía se pretende proporcionar una herramienta de trabajo a los profesores de Educación Secundaria para el aprendizaje de la Nomenclatura Inorgánica en los distintos niveles educativos (ESO y Bachillerato).

Dentro del contexto de las recomendaciones de la IUPAC de 2005 para la nomenclatura de sustancias inorgánicas aparecen cambios significativos. Así, por ejemplo, se cambia la nomenclatura de ácidos oxoácidos y oxosales y la correspondiente a los iones. Además, se suprimen nombres como fosfina, arsina y estibina.

Una modificación significativa es la eliminación de la excepción en la secuencia del oxígeno respecto a determinados elementos que introdujeron las normas de 1990 para su ordenación en las fórmulas correspondientes. Como consecuencia, se trata al oxígeno como componente electropositivo en relación a los halógenos en los compuestos binarios y, por tanto, se consideran como haluros de oxígeno en lugar de como óxidos de halógenos.



Figura 1. Convenio en el que se establece la secuencia de los elementos según su electronegatividad.

De acuerdo con estas nuevas normas de nomenclatura sistemática las sustancias inorgánicas pueden ser nombradas utilizando tres formas diferentes:

- Nomenclatura de composición
- Nomenclatura de sustitución
- Nomenclatura de adición

Sus principales características son:

Nomenclatura de composición (o estequiométrica)

Se basa en la composición -no en la estructura- de la sustancia. La proporción de cada elemento se puede indicar de tres maneras diferentes:

a) Usando los prefijos multiplicadores "mono-", "di-", "tri-", etc. para compuestos sencillos y "bis-", "tris-", "tetrakis-", etc. para sustancias más complejas. El prefijo "mono-" no resulta necesario

excepto si hay posibilidad de confusión. Cuando se utilicen prefijos no se pueden realizar contracciones (no es correcto, por ejemplo, tetróxido, pentóxido,...), excepto en el caso de "monóxido", contracción que sí es aceptada.

- b) Mediante los números de oxidación escritos con números romanos entre paréntesis justo al lado del nombre del elemento (sin dejar ningún espacio vacío). Si el elemento sólo tiene un número de oxidación, éste no se ha de indicar.
- c) Utilizando los números de carga escritos con números arábigos y entre paréntesis al lado del nombre del elemento (sin dejar ningún espacio vacío). En primer lugar se escribe el número y después el signo. Esta modalidad sólo se puede utilizar en compuestos iónicos.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
H																	He
+1																	
-1	-											-		3.7	_	-	
Li +1	Be +2	ı										B +3	C +2+4	N +1+2+3	0	F	Ne
71	TZ	ı										173	T2T4	+4+5			
												-3	-4	-3	-2	-1	
Na	Mg	1										Al	Si	P	S	Cl	Ar
+1	+2	ı										+3	+4	+3+5	+2+4	+1+3	
		ı											l		+6	+5+7	
		L											-4	-3	-2	-1	
K	Ca	П			Cr	Mn	Fe	Co	Ni	Cu	Zn			As	Se	Br	Kr
+1	+2				+2+3	+2+3	+2+3	+2+3	+2+3	+1+2	+2			+3+5	+2+4	+1+3	
					+6	+4+6									+6	+5+7	
						+7								-3	-2	-1	
Rb	Sr								Pd	Ag	Cd		Sn	Sb	Te	I	Xe
+1	+2								+2+4	+1	+2		+2+4	+3+5	+2+4		
															+6	+5+7	
														-3	-2	-1	
Cs	Ba								Pt	Au	Hg		Pb	Bi			Rn
+1	+2								+2+4	+1+3	+1+2		+2+4	+3+5			

Figura 2. Números de oxidación más frecuente de los elementos

Nomenclatura de sustitución

Parte de los nombres de los hidruros progenitores, que se pueden modificar sustituyendo los átomos de hidrógeno por otros átomos o grupos. Los nombres se forman citando como prefijos o sufijos los grupos sustituyentes de los átomos de hidrógeno, unidos sin ninguna separación en el nombre del hidruro progenitor. Esta nomenclatura sólo es recomendada por la IUPAC para los hidruros progenitores y sus derivados y se aplica fundamentalmente a compuestos orgánicos. Como se ve en la tabla 1 se aceptan los nombres tradicionales amoníaco y agua.

BHs	borano	CH4	metano	NHs	azano o amoniaco	H ₂ O	oxidano o agua	HF	fluorano
AlHa	alumano	SiHa	silano	PHs	fosfano	H ₂ S	sulfano	HCI	clorano
GaHs	galano	GeH ₄	germano	AsH ₃	arsano	H ₂ Se	selano	HBr	bromano
InHa	indigano	SnH ₄	estannano	SbHs	estibano	H ₂ Te	telano	н	yodano
TIHa	talano	PbH ₄	plumbano	BiHs	bismutano	H₂Po	polano	HAt	astatano

Tabla 1. Nombres de los hidruros progenitores

Nomenclatura de adición

El nombre se construye poniendo los nombres de los ligandos, por orden alfabético, y con prefijos numéricos si fuera necesario, como prefijos del nombre del átomo central. Esta nomenclatura es especialmente indicada para los oxocompuestos, por lo que en este documento no se desarrollarán para el resto de compuestos.

2.- RECOMENDACIONES

Considerando las recomendaciones de la IUPAC y las características del alumnado de la ESO y el bachillerato se propone el uso de los siguientes tipos de nomenclaturas en cada una de las etapas educativas:

a) ESO

Para los compuestos binarios e hidróxidos se propone introducir únicamente la nomenclatura de composición o estequiométrica, con los prefijos multiplicadores y la posibilidad de añadir los números de carga para los compuestos iónicos o, preferentemente, los números de oxidación (en números romanos).

En cuanto a los ácidos oxoácidos y oxosales sólo se propone el uso de la nomenciatura tradicional y referida a los casos aceptados por la IUPAC.

b) Bachillerato

Para los compuestos binarios e hidróxidos se propone el uso de la nomenclatura de composición o estequiométrica con sus tres variantes: prefijos multiplicadores, los números de carga para los compuestos iónicos y los números de oxidación, recomendando preferentemente el uso de los prefijos multiplicadores o los números de oxidación. También se hará mención a la nomenclatura de sustitución en los hidruros progenitores de los grupos 13-17.

En cuanto a los ácidos oxoácidos, oxosales y sales ácidas se propone el uso de la nomenclatura tradicional y referida a los casos aceptados por la IUPAC e introducir las nomenclaturas de adición y de hidrógeno de manera más general.

3. NOMENCLATURA DE LOS ELEMENTOS

De manera general se denominan con el nombre del elemento químico correspondiente. En el caso de los no metales que forman sustancias moleculares su nombre se basa en el número de átomos que tenga la molécula y se indica con el correspondiente prefijo multiplicador. Se aceptan los nombres oxígeno para el dioxígeno (O₂) y ozono para el trioxígeno (O₃), pero no los de nitrógeno para el N₂ (dinitrógeno) o hidrógeno para el H₂ (dihidrógeno). El prefijo "mono-" se utiliza sólo para los casos en los que el elemento no se encuentra en la naturaleza en estado monoatómico.

Fórmula	Nombre sistemático	Nombre aceptado
Ag	plata	
Fe	hierro	
He	helio	
N	mononitrógeno	
H ₂	dihidrógeno	
N ₂	dinitrógeno	
P ₄	tetrafósforo	fósforo blanco
02	dioxígeno	oxígeno
0,	trioxígeno	ozono
S ₈	octaazufre	
F ₂	diflúor	

4. NOMENCLATURA DE LOS IONES SIMPLES

Los cationes monoatómicos se nombran con el número de carga entre paréntesis. Para los homonucleares, formados por más de un átomo del mismo elemento, se añade el correspondiente prefijo multiplicador. No se deja ningún espacio entre el nombre del elemento y el número de carga.

En cuanto a los aniones se denominan añadiendo el sufijo "-uro" y a continuación el número de carga entre paréntesis. En el caso de los aniones este número de carga se puede suprimir cuando no dé lugar a ninguna ambigüedad. En el caso del oxígeno no se utiliza la terminación -uro y se denomina como óxido.

Fórmula catión	Nombre utilizando el número de carga	Nombre aceptado
Na ⁺	sodio(1+)	
Cr ³⁺	cromo(3+)	
Cu ⁺	cobre(1+)	
Cu ²⁺	cobre(2+)	
H ⁺	hidrógeno(1+)	hidrón
Fe ³⁺	hierro(3+)	
Hg ₂ ²⁺	dimercurio(2+)	

Fórmula anión	Nombre utilizando el número de carga	Nombre aceptado
CI ⁻	cloruro(1-) o cloruro	
S ²	sulfuro(2-) o sulfuro	
H ⁻	hidruro(1-) o hidruro	
P3"	fosfuro(3-) o fosfuro	
O ²⁻	óxido(2-) u óxido	
N ³⁻	nitruro(3-) o nitruro	
c ⁴⁻	carburo(4-) o carburo	
S ₂ ²⁻	disulfuro(2-)	
0,2-	dióxido(2-)	peróxido
C22-	dicarburo(2-)	acetiluro

5. NOMENCLATURA DE LOS COMPUESTOS BINARIOS

Nomenclatura de composición

El método más simple para dar nombre a un compuesto binario utilizando la nomenclatura de composición es a partir de los prefijos multiplicadores, que refleja directamente la fórmula del compuesto. Sin embargo, la proporción entre los dos elementos del compuesto se puede indicar también con el número de oxidación o, si el compuesto es iónico, con el número de carga.

Con los prefijos multiplicadores para un compuesto binario, se sigue el siguiente procedimiento:

- 1. Decidir qué elemento toma el papel de compuesto electropositivo y cuál el de electronegativo. La decisión se toma por convenio de acuerdo con la figura 1. Empezando por el flúor en el sentido señalado, el primer elemento que encontramos es el elemento electronegativo y el siguiente es electropositivo.
- Indicar el nombre del elemento que toma el papel electropositivo sin modificación y añadir el sufijo "-uro" al elemento más electronegativo. Si el elemento más electronegativo es el oxígeno, el nombre que se utiliza es "óxido".
- 3. Construir el nombre del compuesto combinando el nombre del constituyente electronegativo, la preposición "de" y a continuación el nombre del constituyente electropositivo, señalando, para cada uno, los prefijos multiplicadores adecuados ("mono-", "di-", "tri-", "tetra-", "penta-", "hexa-",...), según el número de átomos de cada uno que haya en la molécula.

Por ejemplo, para el OCI₂.

 El oxígeno es el elemento que toma el papel electropositivo y el cloro el papel electronegativo (si la fórmula empírica está escrita correctamente, el elemento más electropositivo aparece a la izquierda y el que toma el papel electronegativo a la derecha).

,

- El nombre del constituyente electropositivo quedará como "oxígeno" (sin modificación) y el del constituyente electronegativo "cloruro" (clor-+-uro).
- Dado que, según la fórmula, hay dos átomos de cloro en la molécula por uno de oxígeno, el nombre del compuesto se construye como "dicloruro de oxígeno".

Para obtener el nombre con la nomenclatura de composición con el estado de oxidación en el tercer paso hay que poner el nombre del elemento más electronegativo con el sufijo "-uro" seguido de la preposición "de" y el nombre del más electropositivo señalando el estado de oxidación sin prefijos multiplicadores. El estado de oxidación se señala con el número romano entre paréntesis inmediatamente después del nombre del elemento.

Para el ejemplo anterior OCl2 tiene el nombre cloruro de oxígeno(II).

Con este mismo método:

Fórmula	Nomenclatura de composición					
	Con prefijos multiplicadores	Con el número de oxidación	Con el número de carga			
HCI	cloruro de hidrógeno	cloruro de hidrógeno	no tiene carácter iónico			
NO	monóxido de nitrógeno	óxido de nitrógeno(II)	no tiene carácter iónico			
NO,	dióxido de nitrógeno	óxido de nitrógeno(IV)	no tiene carácter iónico			
SiCl4	tetracloruro de silicio	cloruro de silicio(IV)	no tiene carácter iónico			

Si el compuesto es iónico, además se puede señalar la proporción entre los elementos del compuesto binario con el número de carga, que señala la carga iónica.

El número de carga se escribe inmediatamente después del nombre del ión sin espacio. La carga se escribe en números arábigos y sigue el signo. El número de carga de los aniones no da lugar a confusión, ya que este es único, de forma que es suficiente señalar sólo el de los cationes. En el mismo sentido, se suelen omitir también los números de oxidación los alcalinos (grupo 1, siempre 1+) y los alcalinotérreos (grupo 2, siempre 2+), así como los elementos más comunes con número de oxidación único (caso del aluminio 3+, por ejemplo).

Fórmula	Nomenclatura de composición						
	Con prefijos multiplicadores	Con el número de oxidación	Con el número de carga				
CaCl ₂	dicloruro de calcio	cloruro de calcio	cloruro de calcio				
FeCl ₃	tricloruro de hierro	cloruro de hierro(III)	cloruro de hierro(3+)				
AgBr	bromuro de plata	bromuro de plata(I)	bromuro de plata(1+)				
HgCl ₂	dicloruro de mercurio	cloruro de mercurio(II)	cloruro de mercurio(2+)				

A) HIDRUROS Y COMPUESTOS BINARIOS CON HIDRÓGENO

Nomenclatura de composición

En las combinaciones binarias de un elemento con el hidrógeno se debe tener en cuenta la secuencia de decisión de la figura 1, de modo que, para las combinaciones de hidrógeno con

elementos de los grupos 1-15, se utilizará la nomenclatura de composición con la denominación hidruro para el hidrógeno con papel de elemento electronegativo y estado de oxidación H(-I) y, a continuación el nombre del otro elemento. Se indicará la proporción de los elementos bien con los correspondientes prefijos multiplicadores o con el estado de oxidación o el número de carga del elemento más electropositivo, en caso de que éste tenga más de uno.

Para las combinaciones con los elementos de los grupos 16 y 17 (excepto el oxígeno) se nombran poniendo en primer lugar el nombre del elemento más electronegativo con el sufijo "uro" y, a continuación el del hidrógeno, si es necesario con el correspondiente prefijo multiplicador.

Ejemplos:

Fórm	No	Nombre no		
	Con prefijos multiplicadores	Con el número de oxidación	Con el número de carga	aceptado
FeH ₂	dihidruro de hierro	hidruro de hierro(II)	hidruro de hierro(2+)	hidruro ferroso
LiH	hidruro de litio	hidruro de litio	hidruro de litio	hidruro lítico
PH ₃	trihidruro de fósforo	hidruro de fósforo(III)	no tiene carácter iónico	fosfina
H ₂ S	sulfuro de dihidrógeno	sulfuro de hidrógeno	no tiene carácter iónico	
HCI	cloruro de hidrógeno	cloruro de hidrógeno	no tiene carácter iónico	

Nomenclatura de sustitución

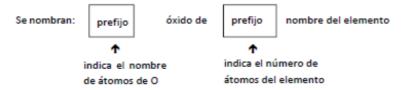
En la nomenclatura de sustitución los hidruros de los elementos de los grupos 13 a 17 de la tabla tienen un papel principal, ya que se usan como compuestos progenitores. A partir de ellos, por sustitución de átomos de hidrógeno, y desde una clara inspiración en la orgánica, se forman compuestos derivados. Los nombres de los hidruros progenitores se construyen con el sufijo "-ano" y son los que se indican en la tabla1. Son aceptados los nombres no sistemáticos amoníaco y agua, pero los nombres fosfina, arsina y estibina ya no se utilizarán.

Una aplicación inmediata de este planteamiento la encontramos en la nomenclatura cationes heteropoliatómicos que usarán la nomenclatura de sustitución. Los más frecuentes que podemos encontrar son el catión NH₄[†] que pasa a nombrarse catión azanio (el nombre no sistemático amonio es aceptado) y el catión H₃O[†] que toma el nombre oxidanio (se acepta el nombre no sistemático oxonio, pero se descarta explícitamente el nombre hidronio).

B) COMPUESTOS BINARIOS CON OXÍGENO

Óxidos

Los óxidos son las combinaciones binarias del oxígeno, que tiene número de oxidación -II, con un elemento más electropositivo que éste, es decir, que esté situado después del oxígeno según la secuencia de los elemento de la figura 1.



Según esta definición las combinaciones del oxígeno con los halógenos (F, CI, Br y I) ya no se consideran óxidos sino que son fluoruros, cloruros, bromuros o yoduros de oxígeno.

Los óxidos se pueden nombrar de tres maneras con la nomenclatura de composición o estequiométrica:

a) Utilizando prefijos multiplicadores

Se denominan con la palabra óxido, sigue la preposición "de" y el nombre del elemento. Óxido y el nombre del elemento van precedidos de prefijos multiplicadores que indican el número de átomos de estos elementos en la fórmula.

Los prefijos no son necesarios si no hay ambigüedad. El prefijo "mono-" se considera superfluo y sólo se utiliza si se quiere enfatizar la estequiometría cuando se comparan sustancias relacionadas (por ejemplo NO, NO₂). Si se utiliza prefijos para nombrar sustancias no se pueden eliminar letras, es decir, debe llamarse pentaóxido y no pentóxido, con la excepción del monóxido.

b) Utilizando los números de oxidación

Se denominan con la palabra óxido, seguido de la preposición "de" y el nombre del elemento. Junto al nombre del elemento se indica su número de oxidación en números romanos:

Si el elemento sólo tiene un número de oxidación este normalmente no se indica en el nombre del compuesto. El número de oxidación se escribe al lado del nombre del elemento sin dejar espacio. Esta nomenclatura coincide con la llamada anteriormente nomenclatura de Stock.

c) Utilizando números de carga

Esta nomenclatura sólo es válida para compuestos iónicos, por tanto sólo es válida para los óvidos metálicos

Se denominan con la palabra óxido, seguido de la preposición "de" y el nombre del elemento. Junto al nombre del elemento indica la carga del ión en números arábigos:

La carga del ión se escribe al lado del nombre del elemento sin dejar espacio y no hay que indicarla si no hay ambigüedad.

Ejemplos:

Fórmula	Nomenclatura de	Nombre no		
	Con prefijos multiplicadores	Con el número de oxidación	Con el número de carga	aceptado
OF ₂	difluoruro de oxígeno	fluoruro de oxigeno(II)	no tiene carácter iónico	óxido de difluor
со	monóxido de carbono	óxido de carbono(II)	no tiene carácter iónico	
N ₂ O	óxido de dinitrógeno	óxido de nitrógeno(I)	no tiene carácter iónico	
Fe ₂ O ₃	trióxido de dihierro	óxido de hierro(III)	óxido de hierro(3+)	óxido férrico
Cu ₂ O	óxido de dicobre	óxido de cobre(I)	óxido de cobre(1+)	óxido cuproso
K ₂ O	óxido de dipotasio	óxido de potasio	óxido de potasio	óxido potásico
O ₅ Cl ₂	dicloruro de pentaoxígeno		no tiene carácter iónico	pentaóxido de dicloro

En el caso de las combinaciones binarias de oxígeno con los elementos del grupo 17 se empleará únicamente nomenclatura de composición con prefijos multiplicadores.

Peróxidos

Los peróxidos son combinaciones de un elemento con el anión peróxido (O22).

Con la nomenclatura de los prefijos multiplicadores se nombran igual que los óxidos. Con la nomenclatura de los números de oxidación se denominan como peróxidos y con la nomenclatura de los números de carga se utiliza dióxido(2-).

Está aceptado el nombre de agua oxigenada por H₂O₂.

Ejemplos:

Fórmula	Nomenclatura de	Nomenclatura de composición o estequiométrica							
	Con prefijos	Con prefijos Con el número Con el número		aceptado					
	multiplicadores	de oxidación	de carga						
CuO ₂	dióxido de cobre	peróxido de cobre(II)	dióxido(2-) de cobre(2+)	peróxido cúprico					
Na ₂ O ₂	dióxido de disodio	peróxido de sodio	dióxido(2-) de sodio	peróxido sódico					
H ₂ O ₂	dióxido de dihidrógeno	peróxido de hidrógeno	no tiene carácter iónico						

C) OTROS COMPUESTOS BINARIOS

Diferenciaremos entre compuestos formados por un metal y un no metal o sales binarias, y compuestos formados por dos no metales

Compuestos metal-no metal o sales binarias. El metal, el elemento menos electronegativo, aparecerá a la izquierda de la fórmula. El no metal, a la derecha.

En todas las nomenclaturas, excepto en la nomenclatura de sustitución, se nombra en primer lugar el elemento no metálico con la terminación "-uro" y a continuación se nombra el metal.

Ejemplos:

Fórmula	Nomenclatura	Nombre no		
	Con prefijos multiplicadores	Con el número de oxidación	Con el número de carga	aceptado
Na ₂ S	sulfuro de sodio	sulfuro de sodio	sulfuro de sodio	sulfuro sódico
FeCl ₂	dicloruro de hierro	cloruro de hierro(II)	cloruro de hierro(2+)	cloruro férrico
Au ₃ N	nitruro de trioro	nitruro de oro(I)	nitruro de oro(1+)	nitruro áurico
NH ₄ Br	bromuro de amonio	bromuro de amonio	bromuro de amonio	bromuro amónico

Compuestos no metal-no metal. En la fórmula aparecerá a la izquierda del elemento menos electronegativo.

En todas las nomenclaturas, excepto en la nomenclatura de sustitución, se nombra en primer lugar el elemento más electronegativo con la terminación en "-uro" y a continuación el otro elemento.

En estos compuestos no se emplea la nomenclatura de composición con número de carga, ya que no son compuestos iónicos.

Ejemplos:

Fórmula	la Nomenclatura de composición o estequiométrica			Nombre no aceptado
	Con prefijos multiplicadores	Con el número De oxidación	Con número de carga	
SbCl ₃	tricloruro de antimonio	cloruro de antimonio(III)	no tiene carácter iónico	cloruro antimónico
SF ₆	hexafluoruro de azufre	fluoruro de azufre(VI)	no tiene carácter iónico	
CBr ₄	tetrabromuro de carbono	bromuro de carbono(IV)	no tiene carácter iónico	

6. NOMENCLATURA DE LOS COMPUESTOS TERNARIOS Y CUATERNARIOS

A) Hidróxidos

Son compuestos formados por la unión de un metal y el ion hidróxido (OH'). Aunque son compuestos ternarios se formulan y se denominan como si fueran combinaciones binarias.

Fórmula	Nomenclatura de composición o estequiométrica			Nombre no
	Con prefijos multiplicadores	Con el número de oxidación	Con número de carga	aceptado
NaOH	hidróxido de sodio	hidróxido de sodio	hidróxido de sodio	hidróxido sódico
Cu(OH) ₂	dihidróxido de cobre	hidróxido de cobre(II)	hidróxido de cobre(2+)	hidróxido cúprico
Pb(OH) ₄	tetrahidróxido de plomo	hidróxido de plomo(IV)	hidróxido de plomo(4+)	hidróxido plúmbico

B) Ácidos oxoácidos

La IUPAC propone para los ácidos oxoácidos la nomenclatura de hidrógeno y la de adición para dar más importancia a la estructura molecular. También se continúa aceptando el uso de algunos nombres comunes o tradicionales. Esto implica que no se puede utilizar la anterior nomenclatura sistemática ni la de Stock.

La nomenclatura tradicional no cambia, por lo tanto la utilización de prefijos y sufijos para indicar los números de oxidación y la estequiometría entre los óxidos y las moléculas de agua se mantiene. Sin embargo se dejan de utilizar el prefijo "orto-" para los ácidos de B, Si, P, As y Sb, por innecesario, y el "piro-", que se sustituirá por "di-" para indicar la combinación del óxido con dos moléculas de agua. A continuación hay una lista de los ácidos oxoácidos más frecuentes que aparecen en el listado de oxácidos con los nombres comunes o tradicionales que acepta la IUPAC en la nueva normativa. Se puede encontrar la lista completa de los nombres aceptados en la tabla IR-8.1 del "Libro Rojo" de la IUPAC. [2]

H ₃ BO ₃	ácido bórico (no ortobórico)	H ₂ SO ₄	ácido sulfúrico
HBO ₂	ácido metabórico	H ₂ SO ₃	ácido sulfuroso
		H ₂ S ₂ O ₇	ácido disulfúrico
H ₂ CO ₃	ácido carbónico		
		H ₂ SeO ₄	ácido selénico
	ácido silícico (no ortosilícico)	H₂SeO₃	ácido selenioso
H ₂ SiO ₃	ácido metasilícico		
		H₂TeO₄	ácido telúrico
	ácido nítrico	H₂TeO;	ácido teluroso
HNO ₂	ácido nitroso		
			ácido perclórico
	ácido fosfórico (no ortofosfórico)	HClO₃	ácido clórico
	ácido fosforoso	_	ácido cloroso
	ácido difosfórico	HCIO	ácido hipocloroso
HPO ₃	ácido metafosfórico		
H AcO	ácido arsénico (no ortoarsénico)	-	ácido perbrómico
_	ácido arsenioso	_	ácido brómico
113A3U3	acido arsemoso	_	ácido bromoso
H ₂ SbO ₄	ácido antimónico (no ortoantimónico)	HBrO	ácido hipobromoso
	ácido antimonioso		
,,	acido antimonioso	HIO ₄	
		_	ácido yódico
		_	ácido yodoso
		HIO	ácido hipoyodoso

Nomenclatura de adición

Informa sobre la estructura de los ácidos y considera que están formados por la unión de un átomo central y una serie de ligandos. Formulando de forma diferente los oxígenos unidos a los hidrógenos ácidos (hidroxido) y los oxígenos unidos sólo al elemento central (oxido). Los hidrógenos que no son ácidos unidos al átomo central se nombran hidruro. Se comienza nombrando a los ligandos, empleando si es necesario prefijos multiplicadores ("di-", "tri-", "tetra-",...) y en orden alfabético sin considerar los prefijos. Finalmente, se nombra el átomo central sin terminación.

Prefijo-hidroxido-prefijo-oxido-nombre elemento

Para escribir la fórmula estructural primero indica el elemento central y después los ligandos por orden alfabético con el subíndice correspondiente.

Nomenclatura de hidrógeno

Se basa en nombrar en primer lugar el hidrógeno, con su prefijo multiplicador si es necesario, seguido sin espacio del nombre del anión (entre paréntesis) obtenido en la nomenclatura de adición, y terminando con el sufijo "-ato".

Prefijo-hidrogeno(prefijo-oxido-nombre elemento-ato)

Ejemplos de ácidos oxoácidos con nomenclatura tradicional aceptada, donde se detalla la fórmula estructural para aclarar estas dos nuevas formas de nombrar los oxácidos

Ejemplos:

Fórmula	Fórmula estructural	Nomenclatura de adición	Nomenclatura de hidrógeno
H ₂ CO ₃	CO(OH) ₂	dihidroxidooxidocarbono	dihidrogeno(trioxidocarbonato)
H ₄ SiO ₄	Si(OH) ₄	tetrahidroxidosilicio	tetrahidrogeno(tetraoxidosilicato)
HNO ₃	NO ₂ (OH)	hidroxidooxidonitrogeno	hidrogeno(trioxidonitrato)
H ₃ PO ₄	PO(OH) ₃	trihidroxidooxidofosforo	trihidrogeno(tetraoxidofosfato)
H ₃ PO ₃	P(OH) ₃	trihidroxidofosforo	trihidrogeno(trioxidofosfato)
H₂SO ₄	SO ₂ (OH) ₂	dihidroxidodioxidoazufre	dihidrogeno(tetraoxidosulfato)
HCIO ₃	CIO ₂ (OH)	hidroxidodioxidocloro	hidrogeno(trioxidoclorato)
HBrO	Br(OH)	hidroxidobromo	hidrogeno(oxidobromato)

C) Oxosales

Nomenclatura tradicional aceptada

Las oxosales son compuestos que se pueden considerar derivados de los ácidos oxoácidos al sustituir los hidrógenos del ácido por un metal.

Para nombrar una sal, se sustituyen los sufijos "-oso" y "-ico" del ácido del que derivan por "- ito" y "-ato" respectivamente. A continuación se añade la preposición "de" seguida del nombre del metal indicando entre paréntesis con números romanos el estado de oxidación del metal, que se puede expresar también mediante el número de carga. Si el elemento sólo tiene un estado de oxidación, éste no se indica.

ejemplos:

Ácido original	Fórmula de la sal	Nomenclatura trad	licional
		Con el número de oxidación	Con el número de
			carga
ácido fosfórico H ₃ PO ₄	FePO ₄	fosfato de hierro(III)	fosfato de hierro(3+)
ácido nítrico HNO ₃	NH ₄ NO ₃	nitrato de amonio	nitrato de amonio
ácido hipocloroso HCIO	NaCIO	hipoclorito de sodio	hipoclorito de sodio
ácido carbónico H2CO3	CuCO ₃	carbonato de cobre(II)	carbonato de cobre(2+)

Nomenclatura de composición (o estequiométrica)

Se nombra en primer lugar el anión, sin indicar la carga, seguido de la preposición "de" y a continuación el nombre del catión sin el estado de oxidación. La proporción de ambos se indica mediante los correspondientes prefijos multiplicadores.

Si el anión está entre paréntesis, se indica el número de iones con los prefijos: "bis-", "tris-", "tetrakis-", etc.

 ${\it Prefijo-(prefijo-oxido-nombre\ elemento-ato)}\ de\ prefijo-nombre\ elemento$

Ejemplos:

Fórmula	Nomenclatura de composición
Fe(CIO ₃) ₂	bis(trioxidoclorato) de hierro
Au ₂ (SO ₄) ₃	tris(tetraoxidosulfato) de dioro
Pb(NO ₂) ₄	tetrakis(dioxidonitrato) de plomo
FeSO ₄	tetraoxidosulfato de hierro
CaCO ₃	trioxidocarbonato de calcio
NaNO ₂	dioxidonitrato de sodio
K ₂ Cr ₂ O ₇	heptaoxidodicromato de dipotasio
Ca(PO ₃) ₂	bis(trioxidofosfato) de calcio

Nomenclatura de adición

Se indica el nombre del anión con su carga seguido del nombre del catión también con su carga. Los números para la compensación de las cargas no se dicen, ya que con la especificación de las cargas no cabe duda.

Prefijo-oxido-nombre elemento-ato-(carga anión) de nombre del metal-(carga del catión)

Ejemplos:

Fórmula	Nomenclatura de adición
Fe(CIO ₃) ₂	trioxidoclorato(1-) de hierro(2+)
Au ₂ (SO ₄) ₃	tetraoxidosulfato(2-) de oro(3+)
Pb(NO ₂) ₄	dioxidonitrato(1-) de plomo(4+)
FeSO ₄	tetraoxidosulfato(2-) de hierro(2+)
CaCO ₃	trioxidocarbonato(2-) de calcio
NaNO ₂	dioxidonitrato(1-) de sodio
K,Cr,O,	heptaoxidodicromato(2-) de potasio
Ca(PO ₃) ₂	trioxidofosfato(1-) de calcio

D) SALES ÁCIDAS

Sales ácidas derivadas de oxoácidos

Están formadas por un anión que proviene de un ácidos oxoácido, que no ha perdido todos sus hidrógenos, y un catión. Se nombran en primer lugar los hidrógenos con el prefijo multiplicador, si hay más de uno, seguido del nombre del anión del ácido oxoácido y, después de la palabra "de", se nombra el catión como en el resto de oxosales.

Ejemplos:

Fórmula	Nomenclatura tradicional	Nomenclatura de composición	Nombre no aceptado
NaHCO ₃	hidrogenocarbonato de sodio	hidrogeno(trioxidocarbonato) de sodio	bicarbonato de sodio
Fe(HCO ₃) ₂	hidrogenocarbonato de hierro(II)	bis[hidrogeno(trioxidocarbonato)] de hierro	bis(hidrogeno(trioxidocarbona to))de hierro(II)
NH ₄ H ₂ PO ₄	dihidrogenofostato de amonio	dihidrogeno(tetraoxidofosfato) de amonio	

Sales ácidas derivadas de haluros de hidrógeno

Provienen de los ácidos hidrácidos que tienen dos hidrógenos y han perdido un hidrógeno(1+). Se nombran con la palabra "hidrogeno" seguida del nombre del anión entre paréntesis y, después de la palabra "de", se nombra el catión como el resto de oxosales. Si es necesario se emplearán los prefijos multiplicadores "bis-", "tris-", "tetrakis-", etc.

Ejemplos:

Fórmula	Nomenclatura tradicional	Nomenclatura de composición	Nombre no aceptado
NaHS	hidrogenosulfuro de sodio	hidrogeno(sulfuro) de sodio	bisulfuro de sodio
Ca(HSe)2	hidrogenoselenuro de calcio	bis[hidrogeno(selenuro)] de calcio	
Ni(HTe)3	hidrogenotelururo de níquel(III)	tris[hidrogeno(telururo)] de níquel	

7. NOMENCLATURA DE IONES HETEROPOLIATÓMICOS

a) Cationes derivados de los hidruros progenitores (tabla 1): son los iones que resultan de la incorporación de un ion hidrógeno, H+, a un hidruro progenitor.

Fórmula	Nombre tradicional	Nomenclatura de substitución (derivado del hidruro progenitor)	Nombre no aceptado
H ₃ O [*]	oxonio	oxidanio	ion hidronio
NH ₄ *	amonio	azanio	

- b) Aniones derivados de ácidos oxoácidos: son los iones que resultan de la pérdida de iones hidrógeno,
 H[†] de un ácido oxoácido.
- b.1. Nomenclatura tradicional aceptada: se cambia la terminación "-oso" o "-ico" del ácido oxoácido por "-ito" o "-ato", respectivamente. Nombrando como ion o anión, en vez de ácido. Si no se produce la pérdida de todos los hidrógenos se antepone el prefijo "hidrogeno-" y, si es necesario, el correspondiente prefijo multiplicador.
- b.2. Nomenclatura de composición: se nombran los elementos, indicando el número de cada uno con los prefijos multiplicadores. Sería como eliminar todos o parte de los hidrógenos de la nomenclatura de hidrógeno de los oxoácidos. Finalmente, se indica la carga del anión mediante el número de carga.

Ejemplos:

Fórmula	Nomenclatura tradicional	Nomenclatura de composición	Nombre no aceptado
PO ₄ 3-	ion fosfato	tetraoxidofosfato(3-)	
SO ₄ 2-	ion sulfato	tetraoxidosulfato(2-)	
SO ₃ ²⁻	ion sulfito	trioxidosulfato(2-)	
P,O,4-	ion difosfato	heptaoxiddifosfato(4-)	
HCO ₃	ion hidrogenocarbonato	hidrogeno(trioxidocarbonato)(1-)	ion bicarbonato
HPO ₄ 2-	ion hidrogenfosfato	hidrogeno(tetraoxidofosfato)(2-)	
H ₂ PO ₄	ion dihidrogenfosfato	dihidrogeno(tetraoxidfosfato)(1-)	

En el caso de los iones que provienen de ácidos oxoácidos y que no han perdido todos los hidrógenos también se podría utilizar la nomenclatura de adición, siguiendo los mismos criterios que para los ácidos oxoácidos. Por ejemplo, el anión HCO₃ se representaría como [CO₂(OH)] y se llamaría hidroxidodioxidocarbonato(1-).

8. REFERENCIAS

1. Nomenclature of Inorganic Chemistry. IUPAC Recommendations 2005. Connelly, N.G.; Damhus, T.; Hartshorn, R.M.; Hutton, A.T. The Royal Society of Chemistry, 2005 [ISBN 0 85404 438 8] Version on-line:

http://old.iupac.org/publications/books/rbook/Red_Book_2005.pdf

Nomenclatura de Química Inorgánica. Recomendaciones de la IUPAC de 2005. Connelly,
 N.G.; Damhus, T.; Hartshorn, R.M.; Hutton, A.T. Versión en castellano: Ciriano, M.A.;
 Román, P. Prensas Universitarias de Zaragoza, 2007. ISBN 978-84-7733-905-2

ANEXO. Modelos de ejercicios de nomenclatura para los diferentes tipos de sustancias con las correspondientes soluciones

Ejercicio 1. Formula o nombra los siguientes elementos o iones homoatómicos:

Fórmula	Nombre	
	Seleniuro	
Ar		
	Trioxígeno	
H ⁺		
	Dibromo	
N ₃ -		
	Cobalto(2+)	
Н		
	Diazufre	
l ₃		

Ejercicio 2. Formula o nombra los siguientes compuestos binarios con hidrógeno

Fórmula	Nomenclatura	Nomenclatura de composición o estequiométrica		
	sustitución	Con prefijos multiplicadores	Con números de oxidación	Con números de carga
KH				
				Hidruro de hierro(2+)
	Azano			
		Tetrahidruro de carbono		
HCI				
			Hidruro de manganeso(III)	

Ejercicios 3. Formula o nombra los siguientes óxidos

Fórmula	Nomenclatura de composición o estequiométrica		
	Con prefijos multiplicadores	Con números de oxidación	Con números de carga
	Pentaóxido de difósforo		
		óxido de zinc	
			óxido de plomo(4+)
Hg₂O			
			óxido de oro(3+)
		óxido de níquel(II)	
	Trióxido de dicobalto		
		óxido de azufre(VI)	
O ₃ Br ₂			

Ejercicios 4. Formula o nombra los peróxidos

Fórmula	Nomenclatura de composición o estequiométrica		
	Con prefijos multiplicadores	Con números de oxidación	Con números de carga
K ₂ O ₂			
		Peróxido de calcio	
			Dióxido(2-) de litio
BaO₂			
	Dióxido de zinc		
		Peróxido de cobre(I)	

Ejercicios 5. Formula o nombra los siguientes compuestos binarios

	Nomenclatura de composición		
Fórmula			
	Diyoduro de calcio		
NaCl			
	Trifluoruro de boro		
		Seleniuro de cobalto(II)	
CuBr			
SiC			
PI ₃			
		Sulfuro de amonio	
HgCl₂			
As ₂ Se ₃			

Ejercicio 6. Formula o nombra los siguientes hidróxidos

Fórmula	Nomenclatura de composición o estequiométrica		
	Con prefijos multiplicadores	Con número de oxidación	Con número de carga
AI(OH) ₃			
	Dihidróxido de hierro		
		Hidróxido de potasio	
			Hidróxido de mercurio(2+)
Ni(OH) ₃			
			Hidróxido de estaño(4+)
		Hidróxido de bario	
	Dihidróxido de zinc		
		Hidróxido de plomo(II)	

Ejercicio 7. Formula o nombra los siguientes oxoácidos

F. Estructural	Nomenclatura de adición	Nomenclatura de hidrógeno
	Trihidroxidoboro	
NO(OH)		
AsO(OH) ₃		trihidrogeno(tetraoxidoarseniato)
BrO₂(OH)		
	Dihidroxidooxidoselenio	

Ejercicio 8. Escribe la fórmula a continuación los nombres de los siguientes ácidos oxoácidos

Àcido difosfórico	Hidrogeno(oxidoclorato)
Dihidroxididioxidoteluro	Dihidroxidooxidoazufre
dihidrogeno(heptaoxodicromato	Ácido nítrico
Ácido perciórico	Dihidrogeno(trioxidcarbonato)
Trihidroxidooxidoantimonio	Ácido silícico

Ejercicio 9. Escribe el nombre de adición de los siguientes ácidos oxoácidos

HIO ₄	IO₃(OH)	
H₂TeO₃	TeO(OH) ₂	
HNO ₂	NO(OH)	
H ₃ PO ₄	PO(OH) ₃	
HMnO ₄	MnO ₃ (OH)	

Ejercicio 10. Escribe el nombre de los siguientes ácidos oxoácidos con la nomenclatura de hidrógeno

HBrO ₂	
H ₂ S ₂ O ₇	
H ₃ PO ₃	
H ₂ Cr ₂ O ₇	
H ₄ P ₂ O ₇	

Ejercicio 11. Formula o nombra las siguientes oxosales

Fórmula	Nombre tradicional	Nomenclatura de composición	Nomenclatura adición
AIPO ₄	fosfato de aluminio		
Ca(MnO ₄) ₂		bis(tetraoxidomanganato) de calcio	
NiSO₃			trioxidosulfato(2-)de níquel(2+)
Na ₂ CO ₃	carbonato de sodio		
NaCIO		oxidoclorato de sodio	
K ₃ AsO ₃			trioxidoarseniato(3-) de potasio
Fe(NO ₃) ₃		tris(trioxidonitrato) de hierro	
Pb(SeO ₄) ₂	seleniato de plomo(IV) o seleniato de plomo(4+)		
Zn(CIO ₂) ₂		bis(dioxidoclorato) de zinc	

Ejercicio 12. Formula o nombra las siguientes sales ácidas

Fórmula	Nomenclatura de composición	Nomenclatura tradicional
Na(HCO ₃)		
Zn(HSO ₄) ₂		
Na(H,PO ₄)		
Li(H ₂ BO ₃)		
Co ₂ (HPO ₃) ₃		
Fe(H ₂ SbO ₄) ₃		
Pb(HS) ₄		
	bis[hidrogeno(tetraoxidosulfato)] de zinc	
	tris[hidrogeno(seleniuro)] de cobalto	
	bis[dihidrogeno(trioxidosulfato)] de calcio	
		dihidrogenosilicato de bario
		hidrogenotelururo de litio

Ejercicio 13. Formula o nombra los siguientes iones heteropoliatómicos

Fórmula	Nomenclatura de composición	Nomenclatura tradicional
CIO ₂		
H ₂ AsO ₃ ²⁻		
	tetraoxidobromato(1-)	
	trioxidocarbonato(2-)	
		ion permanganato
		ion hidrogenocromato

SOLUCIONES DE LOS EJERCICIOS

(Las soluciones se indican en negrita)

Ejercicio 1.

Fórmula	Nombre
Se ²⁻	Seleniuro
Ar	Argón
O ₃	Trioxígeno
O ₃	Hidrógeno(1+)
Br ₂ N ³⁻	Dibromo
N³-	Nitruro(3-)
Co ²⁺	Cobalto(2+)
Н	Monohidrógeno
S ₂	Diazufre
l ₃ .	Triyoduro(1-)

Ejercicio 2.

		Nomenclatura de composición o estequiométrica		
Fórmula	Nomenclatura sustitución	Con prefijos multiplicadores	Con número de oxidación	Con número de carga
KH		Hidruro de potasio	Hidruro de potasio	Hidruro de potasio
FeH ₂		Dihidruro de hierro	Hidruro de hierro(II)	Hidruro de hierro(2+)
NH ₃	Azano	Trihidruro de nitrógeno	Hidruro de nitrógeno (III)	
CH ₄	Metano	Tetrahidruro de carbono	Hidruro de carbono(IV)	
HCI	Clorano	Cloruro de hidrógeno	Cloruro de hidrógeno	
MnH₃		Trihidruro de manganeso	Hidruro de manganeso(III)	Hidruro de manganeso(3+)

Ejercicio 3.

Fórmula	Nomenclatura de composición o estequiométrica		
	Con prefijos multiplicadores	Con número de oxidación	Con número de carga
P ₂ O ₅	Pentaóxido de difósforo	Óxido de fósforo(V)	
ZnO	Óxido de zinc	Óxido de zinc	Óxido de zinc
PbO ₂	Dióxido de plomo	Óxido de plomo(IV)	Óxido de plomo(4+)
Hg ₂ O	Monóxido de dimercurio	Óxido de mercurio(I)	Óxido de mercurio(1+)
Au ₂ O ₃	Trióxido de dioro	Óxido de oro(III)	Óxido de oro(3+)
NiO	Monóxido de níquel	Óxido de níquel(II)	Óxido de níquel(2+)
Co ₂ O ₃	Trióxido de dicobalto	Óxido de cobalto(III)	Óxido de cobalto(3+)
SO ₃	Trióxido de azufre	Óxido de azufre(VI)	
O ₃ Br ₂	Dibromuro de trioxígeno		

Ejercicio 4.

Fórmula	Nomenclatura de composición o estequiométrica		
	Con prefijos multiplicadores	Con número de oxidación	Con número de carga
K ₂ O ₂	Dióxido de dipotasio	Peróxido de potasio	Dióxido(2-) de potasio
CaO ₂	Dióxido de calcio	Peróxido de calcio	Dióxido(2-) de calcio
Li ₂ O ₂	Dióxido de dilitio	Peróxido de litio	Dióxido(-2) de litio
BaO ₂	Dióxid de bario	Peróxido de bario	Dióxido(2-) de bario
ZnO ₂	Dióxido de zinc	Peróxido de zinc	Dióxido(2-) de zinc
Cu ₂ O ₂	Dióxido de dicobre	Peróxido de cobre(I)	Dióxido(2-) de cobre(1+)

Ejercio 5.

	Nomenclatura de composición			
Fórmula	Con prefijos multiplicadores	Con número de oxidación	Con número de carga	
Cal ₂	Diyoduro de calcio	Yoduro de calcio	Yoduro de calcio	
NaCl	Cloruro de sodio	Cloruro de sodio	Cloruro de sodio	
BF ₃	Trifluoruro de boro	Fluoruro de boro		
CoSe	Seleniuro de cobalto	Seleniuro de cobalto(II)	Seleniuro de cobalto(2+)	
CuBr	Bromuro de cobre	Bromuro de cobre(I)	Bromuro de cobre(1+)	
SiC	Carburo de silicio	Carburo de silicio(IV)		
PI ₃	Triioduro de fósforo	loduro de fósforo(III)		
$(NH_4)_2S$	Sulfuro de diamonio	Sulfuro de amonio	Sulfuro de amonio	

Ejercicio 9.

HIO ₄	IO₃(OH)	Hidroxidotrioxidoyodo
H ₂ TeO ₃	TeO(OH) ₂	Dihidroxidooxidotelururo
HNO ₂	NO(OH)	Hidroxidooxidonitrógeno
H ₃ PO ₄	PO(OH)₃	Trihidroxidooxidofósforo
HMnO₄	MnO ₃ (OH)	Hidroxidotrioxidomanganeso

Ejercicio 10.

HBrO ₂	hidrogeno (dioxidobromato)
H ₂ S ₂ O ₇	dihidrogeno (heptaoxidodisulfato)
H ₃ PO ₃	trihidrogeno(trioxidofosfato)
H ₂ Cr ₂ O ₇	dihidrogeno(heptaoxidodicromato)
H ₄ P ₂ O ₇	tetrahidrogeno(heptaoxidodifosfato)

Ejercicio 11.

Fórmula	Nombre tradicional	Nomenclatura de composición	Nomenclatura de adición
AIPO ₄	fosfato de aluminio	tetraoxidofosfato de aluminio	tetraoxidofosfato(3-) de aluminio
Ca(MnO ₄) ₂	Permanganato de potasio	bis(tetraoxidomanganato) de calcio	tetraoxidomanganato(1-) de calcio
NiSO ₃	sulfito de níquel(II) o sulfito de níquel(2+)	trioxidosulfato de níquel	trioxidosulfato(2-) de níquel(2+)
Na ₂ CO ₃	Carbonato de sodio	Trioxidocarbonato de disodio	trioxidocarbonato(2-) de sodio
NaCIO	hipoclorito de sodio	oxidoclorato de sodio	oxidoclorato(1-) de sodio
K ₃ AsO ₃	arsenito de potasio	Trioxidoarseniato de tripotasio	trioxidoarseniato(3-) de potasio
Fe(NO ₃) ₃	nitrato de hierro(III) o nitrato de hierro(3+)	tris(trioxidonitrato) de hierro	trioxidonitrato(1-) de hierro(3+)
Pb(SeO ₄) ₂	seleniato de plomo(IV) o seleniato de plomo(4+)	bis(trioxidoseleniato)de plomo	tetraoxidoseleniato(2-) de plomo(4+)
Zn(CIO ₂) ₂	Clorito de zinc	bis(dioxidoclorato) de zinc	dioxidoclorato(1-) de zinc